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EDWARD THORE AND ROBERT WHITLEY

1. Introduction. Let [2 be a domain {an open connected subset) in
the complex plane and let f be a complex-valued analvtic function on
B, Then the classical maximum modulus theorem savs that either
f(z)| has ne maximum on P or that |f{z)| is a constant on 2, If
j'{s]l| is & constant, it follows readily that f{z) is isell constant.

If f has values in a complex B-space, it 5 well known [5. o 230], ar
[6, p. 100] that the theorem holds. However, the strong form of the
maximum modulus theorem, where if |,."{3_‘.'| 15 comstant then f{s) is
constant, iz no longer true in general. This is illustrated by the follow-
ing simple example [6, p. 100]. Let D be the open unit disc and define

F: D= by f(g) = (1, 2). Then fis analvtic, not constant, and iv."E$:I| =1
for all zin D. (Notation throughout this paper, such as &, follows [5]
wherever possible.)

We show below that the strong form of the maximum modulus
theorem always holds for a B-space X if and only if each point of
norm one 15 a “complex extreme point™ of the unit sphere of X, In
particular, the theorem holds for strictly convex {i.e. rotund) spaces.
We also discuss geometrical conditions on the range of { under which
the theorem heolds for that f. Lastly, we discuss the thearem for
particular B-spaces,

2. Complex extreme points. The notion of complex extreme point
18 central to our results. To molivate it, recall that an extreme point ¢
of a convex set &, hereafter called a real extreme point, is one which
cannot be in the interior of a segment in K. That is, if e =ax {1 —a)y
for D<a <1, with x=v, then either x or v is not in &, Equivalently,
¢ is a real extreme point if it is not the midpoint of any serpment in K.
Thus a real “dise” centered at e “sticks cut of® &, no matter in which
direction it is tilted, By analogy we have the following.

DerFiniTION 2.1, A point ¢ of a convex subset K of a complex 5-
space X 15 a complex extreme point of & f {e:-f—zj.': |z| =1 } K
for ¥ in X implies that y=0.

Rimarks, This is easily seen to be equivalent to requiring only
lz| =1, or even to requiring only that g= +1, &4, The set of complex
extreme points always contains the set of real extreme points for a
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convex set K. Thus the Kreln-Mil'man theorem holds a fortion for
the set of complex extreme points.

3. The strong form of the maximum modulus theorem.

Turorem 3.1, Let X be a complex Banach space such thal each poind
an the surfoce of the wnid sfhere 45 @ complex exiveme poind of he wnil
sphere. Then the sivromg form of the maxtmusn modulus theorem holds,
t.e for I dowain end [0 D—X an analviic funciion, eilfer |v."{3]|| has
na maximm on 1 or flz) 45 constant on 1,

Conversely, 4f e surface of the wndt sphere of X containg o potnt wiich
15 nol ¢ complex gxireme point of the splere, then there 45 @ nonconsiand
analvite funciion [ mapping the open wnil disc duloe X yel salisfving
|__I|.=:3:|| =1 for all 2 tn the disc.

I'roor. Far the converse, suppose that |'|,' =1and x1s nota complex
extreme point. Choose y=0 such that ':J;,—'z:ui =1 for all z| =1.If
;x+3.;._y| <1 for some _' zu| =1, we have 1:| g{!x..pzuyl' .|_i.:c—5c.j,- 12
<1, a contradiction. Thus |xz+zy| =1 lor all |z| =1 and the function
flz) =x+zy, |z| <1, satisfies the requirements of the converse.

Now assume thit every point on the unit sphere of X 15 a complex
extreme point of the unit sphere. Suppose f is an analytic map of a
domain I into X and that |f{z}| atipins its maximum for some s
in 0. Then, by the usual form of the theorem, !_.I"I:zj .. =, a constant,
for zin 0 If a=0, then fiz) =0 and so is constant. If a0, ffa has
norm 1in £ 50, to show §is constant, we may suppose that |f;:z}| =1
for 2 in I} By the identity theorem, it is cnough to show that [ is
constant in some neighborhood in 2 and by 2 change of variable,
we may suppose that the neighborhood is the interior of the unit
disc. So Theorem 3.1 follows directly from Thearem 3.2, below,

TueoreMm 3.2, Let [ be an analviic funchion mapping the interior of
the unit disc dnfo a complex B-space X and suppose thal j'{z}| =1 for
iz| <10 IF ) dx o ocomplex exiveme potnl of the unil sphere in X, then
f{e) is constant for |5 <1,

Note that Thearem 3.2 remains true when 700 is replaced by fis),
an arbitrary point in the range of £ This {ollows readily from a change
of vartable and the identity theorem,

The proof of Theorem 3.2 depends on the next lemma.

Lemva 3.3, et D be a domain dn the complex plane, X o complex
Bespace, and 2 D—X an analyiic funclion wilh |_,|"Ifz}, =1 forall zin 1),
Then for each point v in cllco f{DN), the closed convex hudl of the range
af f, we fove _! }'| =
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Froor. Let v be in co(f{)). Then there are positive numbers
dy, ¢ 0o, e with Zasl and points #, - - -, 2, in I} such that
v= 2 a;f(z). By the Hahn-Banach theorem there is a continuous
linear functional x* of norm one with x*(f(z)) =1. Since !x*{,“[z)ﬂ
=|x*| |f(z)| =1 for all s in D, *[ is an analytic function on I which
attains its maximum at g, From the classical maximum maodulus
theorem x*f(z) =1 on D. Thus x*(y)= > ax*{z)=1 which implics
that |}| =1. Since i'}'| = >alfid] =1, !3-| =1. It [ollows at once
that clico F{O1) also consists of points of norm 1, which completes
the proof.

Fecall that a Banach space is strictly conves (also called rotund)
if and only if each point on the surface of the unit sphere is 4 real
extreme point. Corollary 3.4 will follow at once when we complate
the proof of Theorem 3.1, But we point out now an immediate direct
proof.

CoroLrary 3.4, Let X be a sivictly convex complex Bespace. The sirong
Sorm of the maximum modulus theorem holds for analviic functions with
wafues an X,

Proor. UUze Lemma 3.3 and the fact that a convex set which lies
on the surlace of the unit sphere in a strictly convex space must con-
sist of one point,

ProoF oF THEOREM 3.2. Let D = {z: [z <1}. Write f(z) =x.+g(s)
where g(0) =0, We have clico (D)) =x+elico (D)) and cl{co g(L))
={ > aiglz): 5D, a;z0 and 2 a:=1}. The condition 2 a,=1
can be replaced by 2 a;=1 because 00 is in g(I)).

The method of proof is to assume that {0} is a complex extreme
point. We then show that g is zero by supposing that g is not zera
and then finding a nonzero element win clico g(I)) with the property
that sw is in cli{co g(I)) for |2:_! <r=0, By Lemma 3.3 it then {ollows
that !xg—l—srzﬂ| =1 for all z with |z| <1, and this contradicts the
assumption that f(0)=x 15 a complex extreme point of the unit
sphere in X,

Since g is analvtic we can write giz) = » 6.2, for |f;| <1, where
the ¢, are in X [6, p. 97]. We suppose that ¢, is the first nonzero
coefficient of glz). Let wy, w2, - - -, ., be the ngth roots of unity,
For |z| <1 and anv determination of s we have

| |
S E g{zuill:.m-;} =g . E;,,:_ZE _|- L e e o= Eu{z}-
Hp a1

For simplicity we set giz) = Z:,,i baz™ for |z| < 1. The function gy is
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analytic since it has a convergent power scries expansion, and ge(z)
is in co(g{D)) for z in D, so d{co g(D))Ccllco g(D)). The proof of
Theorem 3.2 will thus be complete il we can show that bz is in
co ga(l3) lor ]s] sufficiently small, To do this we need the next lemma.

Lesya 3.5. There is & constont M such (hat for each inleger n ¢ can
find complex numbers g1, « - - , 2, with

{1) !:;! <M fori=1,2,---,mn,

() (1/n) i =1,

@) (1/m) 25, 5=0, $=2,3,---,n

Proor. For a polynomial x=+4agix=*+4 - - - g, withrootsry, - + -,
fay let R,= D% (r)? p=1, 2, ---. Newton's identities are [8,
pp. 260-262]:

By=—um

R+ aBy=—1a:

Bo 4+ iRyt + - ¢+ + g1 Ry = — nay.
From these identities we see that the polynomial

nt (—1)=u"
Q.[x]=-x'—ux‘—‘+3;f"‘—-~-+

n!
has roots 2. %, + + +, 2. which satisfy (i) and (i) above. We write
Qu(x)=x 32 o(—n/x)?/pl. ]. D. Buckholtz points out that if
M=335911- - - is the number which satisfies M log M=AM+1,

then for |z] =1/, |+ <1 and || 1 and so by theorem 2 of
[2], (see also [3]) 2 3.o(ns)®/p!=0. Thus the roots %, - - -, 3, of
. must have modulus less than M, which completes the proof
of Lemma 3.5.

We now use Lemma 3.5 to complete the proof of Theorem 3.2

Given n, choose 5, - - - , %. as in Lemma 3.5. Then for |3] <1/M,
1 = = | R,
— )=+ X |—2X zg:l Byut™.
o=l LN | M =l

The lelt side is in co(ge(D)) and differs from b= by a vector of norm
Iess than or equal to

il | bu] | 20 .

e

Since the power series expansion for g(z) converges absolutely for
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|5| <1 [6, Theorem 3.11.4], the same is true of go(s) and we get
Jir s ] D f' Mz|m=0, for all 5 with |z| <1/3. Hence bz is
in cli{co go(d3)) for |z| < 1/3 and, as we have seen above, this com-
pletes the prool of Theorem 3.2,

4. The theorem in particular f#-spaces. We have reduced the study
of strong form of the maximum modulus theorem in any given space
to the study of the complex extreme points of the unit sphere of that
space,

In strictly convex spaces, such as L5 E, ), 1<p< @, every
puint on the unit sphere is real extreme so the notions of real and
complex extreme points ceincide. They alse coincide in sup norm
spaces. For example, in BC0S), the set of bounded continuous com-
plex valued functions on an arbitrary topological space 5, (4 continu-
ous) fis real or complex extreme if and onlyv if |f{s)| =1 for all 5 in 5.
The same characterization holds in L.(5, Z, &) with equality taken
a.e. The strict convexity of the complex disc shows such [ are real
extreme points, That other [ are not complex extreme i3 obvious
in L, To see that they are not in BC(S), suppose |f| =1 but

Fls)| <1 for some 5, Then g(s) =1—| ()| is not identically zero and
Fisitee(s)| 2 F | +1=1705) =1 for all ¥ in S and all z in the
closed unit disc so [ 1s not complex extreme,

Theough the notions of real and complex extreme points often coin-
vide, allowing the easier Corollary 3.4 1o settle the problem of the
strong form of the maximum modulus theorem, the notions differ
significantly in the case of LS5, E, ), as we show below in Theorem
4.2,

Linma 4.1, Let (S, Z, w) be o measure space, For f in Li(S, B, u),
let S(f)={sin S:f(s) =0}, For fand gin L(S, Z, u), | f+z| =|f] +g]
tf and only if f=hg a.e. on SIS} and k(s) =0 for sS5HMS(g).

Proor. Since [s([f| +|g! —|f+g|)du=0 we have |[f(s)4g(s)]
=|fis)| +|gis)] ae. and an elementary calculation with complex
numbers now shows that f{5) =k ae on SOMSE, M =0:
letting  f(s)=h(s)e(s), | 14-0(s) | |e(5)| = | als)+f1s)| = | gls}| + | £
=(14|k(s}| ) g(s)]. Thus |14+k(s)| =14 k(s) | since g(s) =0 and we
see that &) = |:Ts|:.s:|| >0 for 5 in S(HMSig).

The sufliciency 15 clear.

Tueorem 4.2, Every point on ihe susface of fhe wndl sphere of
Ia(E, E, p) 45 @ complex extreme poinl,

ProoF. Suppose that f and g are in L.(S, =, u) with [f| =1 and
|/+2g] =1forall |5 £1. Asin the beginning of the proof of Theorem
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3.1, |f+zg| =1 for all |2] =1. Note further that S{(g)CS{HUN
with w(N)=0. To see this,

2=2f sl sf |ftel+]r-

S0
éf |f+g|+'f—g'.+zf | gl
20 B-E1

=f|f--'=-g| + -zl =2
5

Thus Jr_g_.?.;'_lr_';|g: =1}

Write f={{teg)/ 24 (f—5e)/2 and note that |"| = _I_f+zg|;'2
+ |f —zg| /2, and applving Lemma 4.1 we can find for each 2 a fune-
tion k. so that we hawve {{4zg) /2 =k — 2} /2 with k.(5) >0, true a.e.
on S{f—zpi ST +sg). Then zp={k—1/(h4+1) aec. there. Let
sen () =cl{(f(s)) /| Fis)| if ()70 and sgn{f(s)) =0 if flsi=0. We
then have zg sgn f=(h,—1)|f] /{k.+1). The equation holds for all
complex z with |z| <1 and the right side is real. The equation [or
cach & is valid only for 5 in S{7—=2g)MS{ - 52), but by taking z suffi-
ciently small it follows that g sgn f=0a.e. on S{f), that is that g=0
a.e.on S{f). But g is zero a.e. on the complement of the support of J,
and this completes the proof,

Suppose that fis in L.05, E, i) with norm one and g is in Li0S, Z, 1)
with ,'f + gl =1, Then [__f+<rg| =1 for —1=w=1 and as in the proof
of Theorem 4.2, g sgn f is real, g vanishes outside the support of f
and |fsgn f+gsen f| =1, So we see that f is a real extreme point in
Li(8, E, w) il and only if fsgn f=|7()| is a real extreme point in real
La08, Z, p), The extreme points in real L0058, 2, o) are charwcterized
[4, p. 81] as exactly those functions of the form 4+, /u{A4), where 4
15 an atom m Z and &4 is the characteristic function of 4.

In particular, the complex Banach space L(0, 1} has a unit sphere
with no real extreme points but whose surface consists entirely of
complex extreme points.

Our earlier remarks on BC0S) and L0585, 2, k1), in conjunction with
Theorem 4.2, show us that the complex spaces L.05, 2, &) and
L0, 20 40) are never congruent (unless hoth are one-dimensional).
If BO(S) has a continuous function § with |j'{.~;}| not constant, then
we may conclude that complex BO(S) and L.(5, E, ) are likewise
never congruent (unless both are one-dimensionall,

If M is a subspace of X then any extreme point of S¢ which iz In
M 15 also an extreme point of Sy, Thus i the strong form of the
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maximum modulus theorem holds for X it holds [or all spaces congru-
ent to subspaces of X. In the preceding paragraph, L.05, £, &) can
be replaced by anv subspace thereol. In particular, the complex two-
dimensional Banach space £ is not congruent to any subspace of
complex L(0, 1). In contrast Lindenstrauss has shown in [7] that
cvery real two-dimensional Banach space is congruent to a subspace
of real L0, 1), If X¥=X1h -+ - 5., where

ol = dul?+ - + D, 15p<

defines the norm for x={x, - - -, x.), note that a point is com=-
plex extreme for Sy, if and only il it is complex extreme when con-
sidered as a point of Sy, For suppose & is extreme in, sav, Sx,. Then
|x'-|—zf_y;, e j:,i}| =1 implies |:n:—|—zy1!?"'+ AT R TR —i—l' sjr..|-"gl
for |z_|‘=_21. But since x is complex extreme in Sy, =0, and
|&42m| =1, whence wa= - - - =4,=0. Thus % is complex extreme
in Sz

A rather different discussion of maximum modolus theorems
appears in [1]. An easy example given there shows that the strong
form of the maximuom moduolus theorem fails for B(H), the set of
bounded operators on a Hilbert space {of two or more dimensions),
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