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1. Introduction. We present a systematic account of known theorems relat-
ing compact linear operators and their conjugates. Examples are given showing
that all the theorems which are “possible” in a certain broad sense are already
known. The gencral method is that of [6].

In what follows, X and ¥ are normed linear spaces. [X, V] is the set of
bounded linear operators with domain X and range in ¥. T denotes a linear
operator and &£(T) is its range. T is compact if, for each bounded sequence (x.)
in X, (Tx,) has a convergent subsequence. [X, ¥]. stands for the set of compact
lincar operators with domain X and range in ¥. We say that T has an inverse
if Tx=0 implies x=0, {.e., il T sets up a 1-1 mapping of X onto E(T). The
inverse mapping T is also linear. X is the space of bounded linear functionals
on X, normed in the wsual way. If TE[X, ¥], the operator T” is defined as
follows: T"y' =x’, wherex’ €X" isdefined by ' (x} = ¥'(T%), all=SX. 'S [V, X']
and || 7'|[ =[]

Motivated by the known theorems relating a bounded operator T and its
conjugate, we classify various possibilities for T by

I: R(T) =V (indicated by writing T<T1).
II: R(T)# ¥ but R(T)=¥ (written T&1I, and so on for succeeding cases).

III: R(T) =Y.
1: T exists and is bounded.
2: T1 exists but is not bounded.
3: T does not exist.

If TEII and T'E1, we combine this by writing T'©I1. Thus there are nine
possibilities for T Similarly, T has nine classifications. Thus, the pair (T, T")
has 81 classifications. We call these 81 classifications the states of the pair
(T, I"). I, for example, TE11; and T'E111;, we say that the pair is in state
(11, I1L5). -

Taylor and Halberg [6] found the possible states for the pair (T, 7¥) when
TE[X, ¥]. They organized their results schematically as shown in Figure 1.
Eeferring to this figure, if a box is crossed out, this means the corresponding
state is impossible for any pair (T, T'), regardless of the choice of X and V. If,
on the other hand, a box is not crossed out, it is “possible.” Some “possible™
states become impossible when X and ¥ are suitahbly restricted. This is sym-
bolically noted in the square representing the state, The key below the figure
gives the meanings of the symbals.

Remark. A generalization to unbounded operators of the Taylor-Halberg
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state diagram for bounded operators has been made by Goldberg [4]. The de-
tails are to appear in the Pacific Journal of Mathematics and the results are:

1) If T: X—Y is an operator whose graph is closed in the product topology
of X X ¥ and the domain of T is dense in X, then the Taylor-Halberg state dia-
gram remains true. (It is remarkable that such a vast extension of the operator
class does not result in the opening up of a single new square in the state dia-
gram.)

2) If T: X—Y is any linear operator with dense domain (Linear is being
used to mean T(ax+by) =aTx+bTy; there are no topological implications.),
the state diagram is the same as the Taylor-Halberg state diagram except that
all the X and ¥, symbols are to be erased.

State Diagram for Boanded Linear Operators ([X, ¥]

W

7
'_ X

Bk b RGN WL
T =
Fic. 1

Eey: X: cannot occur if X is complete; ¥: cannot occur if ¥ is complete; X:-: cannot occur §# X s
reflexive.

2, Derivation of the state diagram for compact operators. An operator is
bounded if and only if it sends bounded sequences into bounded sequences.
Convergent sequences are bounded. Therefore every compact operator is a
bounded operator so [X, ¥l. is a subset of [X, ¥]. Hence the state diagram for
[X, ¥]. can be thought of as a restriction (fewer open squares) of the diagram
for [X, Y]li The restriction of the state diagram for [X, ¥] to the state diagram
for [X, ¥ follows from two lemmas below. Because of the form of Lemma 1,
the state diagram will be established under the assumption that X and ¥ are
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infinite dimensional. The simple case in which X and/or ¥ is finite dimensional
15 considered separately.

Lemwma 1. If T is compact and TE1, then dim R(T) and dim X are finite and
equal ([s], p. 115).

From Lemma 1, if X is infinite dimensional and T is compact, state 1 is im-
possible for T. This mezns that the first, fourth, and seventh columns of the
[X, ¥] state diagram correspond to impossible states in the [X, ¥]. state dia-
gram. Similarly, ¥ is infinite dimensional as a consequence of our assumption
that ¥ is infinite dimensional. so the first, fourth and seventh rows are impossible
states in the [X, ¥], state diagram. Thus we see from Lemma 1 that seven of
the sixteen possible states for [X, ¥] are impossible for [X, ¥).. To see the full
strength of Lemma 1, observe that forty-five squares, more than half the total,
are shown to be impossible by Lemma 1, without invoking any other theorems.

State Diagram for Compact Linear Operaters ([X, Y1)

Fic. 2
Key: ¥:impossible f ¥ is complete; X,: impossible if X is reflexive; FilX7): impossible if ¥(X") &=
inseparzble,

The following result of Banach shows that the state diagram for compact
- operators is further restricted for certain choices of X* or ¥.
Leanta 2. If T is compact, then R(T) is separable ([1], p. 96).

If T is not in III and 1 is inseparable, then R(T) is inseparable. Hence
E(T) is inseparable and Lemma 2 shows that T is not compact. Thus, if T"is _
compact, states I and Il are impossible and the first six columns are deleted.
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Similarly, if X’ is inseparable the first six rows are impossible states. The re-
sultant state diagram is shown in Figure 2. The examples of Section 3 show that

this is the final form.

Remark. In constructing the state diagram for X and/or ¥ finite dimensional,
it is simplest to consider in turn each of the three cases listed below. The results
given are immediate. If neither X nor ¥ is (0), the two states shown in each case
always exist. No others exist.

1. dim X =dim ¥: X and ¥ are both finite dimensional. (III;, I111,), (I., L).

2. dim X is greater than dim ¥; ¥ is finite dimensional. (I11;, I11,), (L. ).

3. dim ¥ is greater than dim X'; X is finite dimensional. (III;, 111;), (II1:, I3).

Obviously 11 and 2 are impossible for T and T so the state diagram (Fig. 3)
is drawn with only the 16 squares listed.

Fic. 3

Key: The four open squares correspond o existing stetes if and only if the conditions within the
open squanes are folSlled.

3. All the states shown as possible exist “maximally.” The examples to fol-
low show that every state shown as “possible” actually exists. The examples are
®maximal” in the sense that (I) X and ¥ are each complete, or even reflexive,
and (2) X¥ _and ¥ are inseparable, unless this is already forbidden by the
[X, ¥]. state diagram. Making X complete and ¥ reflexive is suggested by the
occurrence of these restrictions in the [X, Y| state diagram, for they do not
appear as restrictions in the [X, V], state diagram.

(1115, 1I1.): All the operators with finite-dimensional ranges are in this state
for any infinite-dimensional (X, ¥) pair. An (X, ¥) pair such that X and ¥ are
reflexive, and X’ and ¥ are inseparable, is: X = V=/*(Q) where the cardinality
of Q is greater than M, Note: For any set Q, I*(Q) is defined as the set of those
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scalar-valued functions with domain @ such that (1) at most a countable num-
ber of the coordinates are nonzero and (2], Z|xu[2 iz finite. x, is the gth co-
ordinate of a typical function x. The norm of x is the square root of the sum in

(2).

(IIs, 11:): X = ¥ =107; let (m:), k=1, 2, - - - be a countable orthonormal basis
in I%. Define T by Tu, = 2'*u,. T is compact because it satisfies the criterion (see,
e.g., [3], Th. 7, Cor.) 2 |&.]*is finite, where (£;) is the matrix corresponding to
T T =T; hence the state must be, according to the diagram, (IIs, IIs) or (111,
I1L;). But f{"f:f‘} = ¥ because every element with at most a finite number of non-
zero coordinates is in R{T).

(I15, 11L}: X = ¥ =10*; define T by Tue=2"%u 4, k=2, 3, - - - and T =0.
The arguments of the preceding example can be used to show T is compact and
in (IIs, 111:). To make this example “maximal,” we must modify it so that X is
inseparahle. Let X, be the direct sum of £* and 13(Q), where I*({Q) is a nonsepara-
ble Hilbert space. Define T as the direct sum of Th and T by setting T:=0 on
P(@). This T, with the pair (X,, ¥), is the desired example.

This device can be used to make X' or ¥ inseparable in all the following
state examples, unless the state diagram already forbids this.

(111, II;): Use the conjugate of the operator in the preceding example.

(II,, I1Is): X =0, ¥=10?; define T by Tus=2""*u;, as in example (IIs, 113).
It is shown in [6], p. 104 that the state is (11, 11I;). Compactness is shown as
follows: Let T, be the same as T except that the domain of T, is /2 Let Iy be
the canonical imbedding of I' in I? defined by Ty =x. It is readily verified that
[|[To|| = 1. Notice that T'=Tslq and that Ty is compact by the previously used
criterion. Hence T is compact.

(111z, T1I): X =D, ¥=8; Tur=2"tupp, k=1, 2, - - -; T is shown to be
compact by the method of the previous example.

(Is, ILs), (Is, 1112), (I5, 1112} : Examples of these states are obtained by modify-
ing the previously given examples of the states (I, IL.), (11, I1ls), (115, 111},
respectively, using the procedure given in [6].

4, The state dizgram for weakly compact operators is the same as that for
bounded operators. The weak topology on X is the weakest (coarsest, smallest)
topology making every element of X’ continuous. A linear operator TE [X, Y]
is weakly compact if the weak closure of T(Sx) is compact in the weak topology
on ¥ (Sx is the unit sphere in X). The set of weakly compact operators is desig-
nated by [X, ¥]u Observe that [X, V], is a subset of [X, ¥l.. and that
[X, ¥lue is itself a subset of [X, ¥]. To show the second inclusion, note that a
weakly compact set is weakly bounded hence, by the uniform boundedness
principle it is norm-bounded. The first inclusion is true because TE& [x. Y]
means that the norm closure of T'(Sx) is norm-compact and hence weakly com-
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pact. Now note that the norm closure of a manifold equals the weak closure,
therelore the weak closure of T(Sx) is weakly compact.

We now show the equality of state diagrams for [X, ¥] and [X, ¥].. We
need the following result:

THEOREM. Y 15 morm reflexive if and only if Sy is weakly compact (see, e.g.,
[2], Ch. 1V, Sec. 5, n° 2, Prop. 6). ;

This theorem shows us that [X, ¥]=[X, ¥].. if ¥ is reflexive. Thus the
examples in [6] which show a state is possible and have Y reflexive also show
the state is possible for [X, ¥]... The only possible states in the [X, ¥] diagram
not included by this are (s, 11.), (Is, 1113}, (I, 1115). But if T i=s compact, T is
weakly compact so the examples of these three states given in the [X, ¥,
diagram suffice for the [X, ¥].. diagram.
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