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IF X and ¥ are normed linear spaces and 7 X+ ¥ 15 a compacl operator, when
doss T X = BT, where B{T) is the range of T and T, is defined by ¥z = 'z,
rernain {or fuil 4o remain) compact ? We extend the answers given in [5] to this question,

We agsume throughout that the various bases are normalized, e | n,| =1, all £,
for the basiz {u;}. This simplifice notation and does nol aflect the generality of our
arguments. Limits of summation from 1 to s are sometimes omitted. All others have
heen made explicil. Operators are assumed to be bounded, linear and with domain the
entire zpace. Reler Lo [4] for unspecified notational conventions.

Definition 1, Let X and ¥ be normed spaces and T: X =¥ be compact. If the
map 751 X T{X) defined by Tor = Fx is compact, then I' is perfectly compuact.
Otherwize T i imperlectly (or, not perfectly) compact. We call 7'y the reduced operator
for T

We use the following clementary properties of perfeclly compact operators,

Lemma 2, (i) Let W, X, Y and Z be normed spaces, 1§85 W Xisonto, T: X =¥
is perfectly compact, and U0 Y =2 then T8, UT and hence UTS | are perfectly compact.

(1) Operators with finite dimensional range are perfeetly compact,

(i1} Sealar multiples of perfectly eompaet operators are perfectly compact.

Hv) The snme of perfectly compaet operators need not be perfeetly eomport.

(v) I B s bonnded and P is perfectly compact, then B P s perfectly conpect bt PR
need not be perfecily compact.

Proof. To see the fiest part of (i), note that R{T) = R{T5). To establish the
second part, let {u,} = X be a bounded sequence. Since 7': X =Y 18 perfectly compact,
T, has a subsequence 7'z, — Tz for some x in X. Since Ul is continuous, UTx, — UTx

hl
alzso, Thus 77 is perfectly compact.

Statement (i) [ollows from the completeness of finite dimensional normed linear
spaces. Statement (iii) Tollows from (i}, (iv) follows from Lemma 14 below, and (v lollows
from Lemma 15 {i) below,

It was shown in [B] that there are imperfectly compaet operators, We next show
{Theorems 5, 7, 9) that in some caszes the existence [or non-existence] of imperfectly
compact operators is determined by the nature of the domain gpace.

#1 This work was supported in park by the National Selenee Foundation unider veseareh grant NS0 4a05E,
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Definition 3. A B-gpace X is imperfect if for any infinite dimenzional B-space T,
there alwavs 18 an imperfectly compact operator 0 X ¥. A B-space X iz perlecl if
for every B-space ¥, all compact operators from X do ¥V oare perfectly compact, A B-space
is mixed if it iz neither perfecl nor imperelecl.

Lemma 4. (1) Spaces somorphic to perfect, mized or imperfect spaces are, respectively,
perfect, mived or dnperfect,

(i) Let X == X, & X, If X, is imperfect, then X is tmperfect. I X 15 perfect, then X,
and X, are perfect. Conversely, if X, and X, are perfect, then X is perfect.

(i) A B-space which is the continnous linear image of a perfect Bespace is perfect.

Proaf. The lirst and third statements follows from Lemma 200, 1T 70 X -2 s
imperfectly compact, then letting £ denote a projection of X onto X,, 7P X -2 s
imperfectly compact, which ecetablishes the lrest two statements in (1i),

Now suppose that X = X| & X, with X, X, perfect. Let T: X+ ¥ be compact.
Then 7!, 7|y, are compact, hence hoth (7' [, ), & T X and (7], ) Xo= T'X,
are compack, Therefore }"[i*:a'_,\.L}"”'1 anid G"‘_(.‘?_rl}”': are compact, hence complete, so
?'I:.ﬁ'_-L-L:l?""' and (S, )" are compacl. Thus, (T'[;): X, = X and (¥ ),: X, > TX
are compact. [t follows that Fy: X— X is compact, for if P: X— X, Llhen

To=ToP + Ll — Py =Ty |e) P+ AT g} LI — Py = AT [5)i B + (T |5 )s (L—P);
which is compact, for (7' [ ), P and (T |y ), {{ — P} are compact since (e g.]

(T [y PO < (T e | PISE = PUT [ ) (Sx)™,
which is compact, Thus X 15 perfect.

Remark, We do not presently know whether there are any mixed F-spaces. Since
the only perfect spaces we know of are the reflexive spaces (Theorem 9], we do not know
about the converse Lo part of 4 (i), namely, whether if X, and X, are perfect, it implies
that X, & X, is perfect.

Theorem 5. {f X is isomorphic to any infinite dimensional complemented subspoce
of any abstract L-space [3, pp. LO0EL] (in particular if X s an abstracl L-space), then X
s dmperfect.

Proof, 1t follows from [9, page 221, Cor, 4] that X = [, & X,, henee by Lemma 4(1),
it suffices to prove the Theorem for @ = 1),

Every inlinile dimensional H-space Z contains a closed inflinite dimensional basis
space ¥ [2]. Henee it suffices to define 7' from I, into Y as in Lemma 6 below.

Lemma 6. Let ¥ be a B-space with hasis {ug}. Let {eq} be the standard basts for 1.

yom - . i AR} -
Fet T:l =Y be defined Iy Tep = u, '2} . Then
P — £ ki a7
T = (Ea) u, + _)J- iy —-,’i iy r}: W, + -

Lei T, be the operator from 1, onto T(1)) defined by Tox — Tz, Then
{(a) T is defined on ell of I and T is continnous.
iby T, and hence Ty, is one to one
(¢) T s compact bt T, is wnotl compart.
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Progf. The first assertion follows from

x. e G
2|. R T R 3 I

To| 2| 2w +

To gee that T s compacl, define the finite dimensional range operators 7% by

Ty =(Ee)u, 4+ =2n .. Then
B 1 2.. A |
i Lo . ¢ i |
U o F1H o LS e | ot o a1 | RN e |
| T — T | = 220w, - <

g0 1" is the uniform limil of finite dimensional eange operators, hence compact,

To gee that ¥y 03 nol compacl, consider the bounded sequence (e The sequenee
{ ¥} converges to uy, henee so does any subsequence. Bul w1z nol the image of any
element in f,, for if it were, we would have from the uniquess of the basis expansion

. als e £ =
that Xz, =1, vet ,)' =¥ z" =0,..., hence #, =--- =y =--- =10, a con-
Lradiction. -

Several absleach Lespaces are Dsted in [4, page 511]. The next theorem strongly
generalizes the eounter-example of |5, Example] and exhibits other imperfeet spaces,

Theorem 7, Let the B-space Wobe the direct gum of the Bespaces X oamd V. Suppose X
& 5 i 3 [ '
has o bosis {rf,_} sueh that for some sealor sequence Jagl, sup | X agey <0 oo yel 2 age; does

bl el
wid define an element of X (e the basts {eg) is not bownde ly complete), Then Wois imperfect,
In particilar, if W is @ basts space with a houndedly incomplete basis {e.} and 2 is a bosis
gpace with basis Tu), then there s an iniperfectly compesl operator T W — F wliel is
I i |

diggonal relative to the pair of bases {e;} and {u}.

Proaf. T4 sulfices by Temma 4(1) to prove the theorem for W = X. It further
suffices, by the fiesl theorem in [2], Lo give a proof under the additional supposition
that # has a basis {u;}.

. 1 0 FrE v w0 ~ Oy .
If £ = X ey, we attempl to define 7 by 7(Zee) =2 a7 i Now
5 R |
i—1 25 T i=1 2

i
and sinee the sequence [T} of operators on X defined hy 7,2 = X ey is uniformly
i1
bounded [3, page 67, Theorem 1 ()] by some econstant K, | Zee, | = 1 implies
eg| = |ees | = 2K for all & Thus the series for 7z is absolutely comvergent [or all
so Tr 15 defined, 1t iz evident that 7 iz the uniform limit of the continuous finite
Ll

: f - . y A P
dimensional range operators T, defined by T2 — 3 ‘;uh henece T is compact.

Ta see that the reduced operator iz not compact, let {a,} be a scalar sequence as

in the hypothesis. | Normalization of the bases doesn’l affect thiz. TF {d,} i a not necessarily

normalized basis and {5} is a sequence of sealars such that sup X bd, < oo yot
¥ h i !
X bgdy does not define an element of X, then o, = 6, | d; | defines such a scalar sequence
(| Y
; . . d;
for the normalized basis ¢, = i ; | :|
i J
. :

10+
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i
Congider the bounded sequence =% — ¥ a0, 1f

il

o
sup je™ | = M, sup|ai| =sup |ees| Z2M 50 2= % Zu,
u i i i

converges absolutely and therefore defines an element of Z. Further, 7% converges
to z. Yet z 33 not in B{T), for, from the uniqueness of the basis expansion and the facl
that T is 1 —1, the only preimage of 315 Xage;, which does nob define an element of X,
Thiz proves the theorem,

Corvollary 5. The spaces C[0, 1], ¢,(S) and o5), where § s an infinie poind set,
are Loiperfect,
FProof. It is easy Lo show that the basis for C[0, 1] given in [8, page 2377 is not
b
boundedly complele. In particular, there is a scalar sequence {o,) such that X age;
f=1
assumes the wvalues f, fo, ..., fi,... given by fo{t) =2%, 0 =0 S2°F ju) =1,
2% =71, Then fp converges pointwise to the characteristic Tunetion of [0, 1].
Alernately, one can reduce the proof for €0, 1] 1o that for ¢, by noting that [0, 1]
conlaing o complemented copy of ¢ [9, Theorem 4.

To see that the usual bages for ¢, and for e are not boundedly complete, consider
the sequence {«'"} of elements of ¢, defined by 2 = (—1)' il { = n, ™ =0if { = n,
which corresponds to the scalar sequence of a; defined by a, = (—1)4 all £ Whenever &
iz an infinite point set, ¢,(8) and ¢(5) conlain complemented copies of ¢, and ¢ respec-
tively, Hence the theorem holds for e (8) and (8} as well.

Remark. If Lhers were an infinite dimensional H-space Z such thal every compart
operator from I, 1o 2 were perfectly compact, then it would follow from Lemma 4 (1)
and Corollary 8, letting X =1[_ and X, = ¢, that there can be no continnous pro-
jection from [ onto ¢, a well-known result of Phillips [10].

This Mustrates o possible application of the theorv. Whenever we can find a (non-
reflexive) perfect or mixed space X with an imperfect subspace 2, we then know that 2
is not complemented in X,

Theovem 9%, If X is reflexive, Y is o normed lnear space, and T X ¥ s compact,
then To: X— R(T) is compact. In particnlar, reflexive spaces are perject.

Froof. Replace ¥ by i completion, ¥,. The operator T remains compact.
By Ringrose’s Theorem [11, Theorem 3.5], T iz continuous when restricled to
{5y, Tre)—= Y, where & iz the closed unil sphere in X and 7., 1s the X* topology. Since
X s reflexive, (S, r,.) 18 compact so T'(5,) is compact in ¥, . Therefore it is compact
as a subsel of R(7). Thercfore T(S,) = T(S)™7 so the latter is compact. Thus 7,
is compact and the Lheoram iz established.

We do not presently know whether there are non-reflexive perfect spaces.

o

Thecrems 7 and 9 together show that if X is a reflexive basis space, every basis
for X is boundedly complete, This is part of a well-known theorem of James (6],

Theorem 9 shows us that when 1 < p = oo, the Theorem and Covollary in [3] are
true for all compact operators, rather than just the compact diagonal operidors,

Y} This theorem s due to K, Whitley, The proof above is lue to 13 Lacey, ©wish to thank F, Laeey anl
It. Whitley for helpful eomments and observations,
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In [5, Theorem | we call an operalor 7' belween sequence spaces X and ¥ diagonal
if there is a scalar sequence {/} such that 7" is defined by Tz = y where = — [z} is an
arhitrary element of X and y = {e.x;}. We did not explicitly characterize the compact
diagonal operators in terms of the associated scalar sequence {e;}. It is not diffieult to
do this for the spaces oceuring in [5, Theorem ], namely, X =1L, ¥ =, 1 = p, g = e

The next lemma includes the characlerization of comparct diagonal eret'ut.m'ﬂ in
the two cases which slill relain their interest after the discovery of Theorem 9, namely,
p =1and p = oc. Part {¢) of the Lemma is included for completeness. T is nol needed
specilically for the two cazes of interest for our problem.

Lemma 10 ff X = [, and V= I, w diegonal operator T assoctated with the sequence
{eg} 18 compaet if and only if
) 1 = p=y _ oo and e} is an element of ¢,
(b) p=cc =g =1 and {c is an element of 1.
{¢) ooz po=q=1 and (o) is an clement of 1., where p' is defined by the equation
1 1

R ¢
Proaf, For part (a), suppose first that g <2 oo, 16 15 easily seen thal a necessary
condition that a diagonal operator be bounded is thal {g} €l . In this case, from
Jemsen's mequality we have

L — . !
|9 < sup | e | (2 |z 7).
Hence |T'| Zsup|c

Choosing x = &, shows that | | = sup | ¢; |, where ¢ is the i-th basis element

of 1. Henee the bounded diagonal operators are precisely those with {e} €1, . Further,
| T|=sup | e

[f fet € e the operator 1z the uniform himit of finake dimensional range operators
Wiy LR 1 t

and therefore iz compact. I {e,} € £, Lthere is an & = 0 and a subsequence {r, } such that
| 6y, | = . Then Ie, } 18 a bounded sequence whose image has no convergenl wuh&E‘qui:nf‘E

and the o pmatm is not compact. Therefore the compact diagonal operalors are precisely
those such that {e;} is in c,.

This proof also yields the case 1 = p = ¢ = oo aller an obvious medification of
the inequality chain.

Next we establish the remaining case of (a), p =g = oo, and (b). The stated
conditions on {e;} imply that ¥ is the uniform limit of finite dimensional range operators,
and therefore compact, Conversely, it can be geen gagily thal Lhe operator is not compact
if the conditions are not fulfilled.

The fact that the diagonal operators salislying the condition in part (¢} of the
lernma are bounded  Tollows [rom [4, VIO AL 1] They are also compact hecause
oo = p = ¢ = 1 implies all bounded operators are compact [1, page TOUJL

Conversely, suppose that ¥ is a diagonal operator such that {e} is not in [,
AN w o [ - “Ir" ‘)
st | & | = oo, Lel ._1_‘.] T j"-.‘.' and let gz {_5gr|_ {:;]. | i | i

F
iz defined az 0 when ¢ = 0 and as ¢

L&

: where sgnoe

—q

when ¢; &= 0 and ¢; = re™,
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# " P i

; 2 b E J .

Then 2|z, P = X | ¢ |{ i ) = X | e |" = Ky, so each member of the sequence
i=1 i1 i1

of vectors {2} defined by

LAY
e =1
o= 1
K{:
has norm 1.
But
" 1 2
PR & fecft [—d
f ?I.E:"“:I |'|I =t I 1 T ! I 1 : rr{‘"j :
ki it
n i

g0 sup | Fa'' | = oo and 7T iz unhounded,
n

The proof of Theorem & suggests Lhat we study the stronger (Lemma 12(i1)) nolion
of full compactness (Definition 11} az a poszsible approach to investigating perfect
compactness,

Drefinition 11, Let X and V be normed linear spaces. An operator 70 X 2 ¥ 05
frlly compact 10 T(8 ) s compacl.

Lemma 12, (i) Let W, XY and Z be normied Dvear spaces, 1P 50 W — X maps the
untt sphere onto a closed set, T X =V s fally compact, and U0 Y 2, then T8, UT
and hence UTS are fully compact.

() Felly compact operalors are perfectly compact,

(i) A eompeact operator with finile dimensional range need ol be fully compact. fenee,
perfect compaciness does nol tmply (ol compactiess.

(iv) Scalar multiples of fnlly compact aperators are fully compact.

(v) The sume of bwa felly compaed aperators peed wob be fully compaet.,

(vi) £f F s fully compael and B s bownded, B need nol be fully compact,

(vil) The uniform imit of fnlly compoct operators need not be fully compact,

Proof. The first statement iz evident and the second iz established in the course
of the prool of Theorem 9.

We establish (i) by laking X = e, ¥ = (1) and lelbing ¢ be any non-zero veclor
in Y. The operator T: X =¥ defined by Tz,) = X -
dimensional range. It is not fully compact because the set (S5} — {ee: | ¢| = 1], where
¢ 1% a sealar. and that sel 1s nob compacl.

#
oF haz norm one and has one

Statement (iv) follows from {1).

Statement (V) follows from (i) and Lemma 14 below,

Statement (vi) follows from (i} and Lemma 15{i) below, The last statement follows
from (11} and Lemma 1510 below.

Hemark. Analogous to Definition 3 for perfect spaces, we could define a S-space X
to be full if Tor each B-space Z, every compact operator 70 XN 2 s fully compact. The
comeept of a full space has no interest for Lhe following ressons. The prool ol Theorem 9
ghows that reflexive spaces arve full, Conversely, it follows Irom James [7)] that a full
space 15 reflexive
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=1
o)

The next Lheorem provides useful examples of fully compact operalors,

Theorem 13, Let X and Y be basis spaces and suppose X has o boundedly compleie
basis {ugy. Then every compact dicgonal eperator is fully compact.

Proof, Withoul loss of generality we can assume that |a, | =1, all . We can
further assume that X and ¥ have the form of the canonically associaled isomorphic
spaces deseribed in [3, page 67, Theorem 1]. This does not alter our assumptions that
| el = 1, all ¢, and that {u} iz boundedly complete.

Suppose first that all ¢, are non-zero, If 2™ is any sequence in &, it sulfices to
i b i T Yel .o o a
show that T -y = {y,} implies that y is in T(5y), 1. e., that {ﬁ_l.-] is in &L Sinee

Ty and the coordinate funetionals are continuous, it follows that lim c,.2™ =y,
for each ¢ Hence for each posilive integer A7, ’

(H Ay § | M | My

H g R L T T : _— :

X ¥ w, | = | 3 |2 ¥ ||+ | 2wy | = | X ! *'r“|.n; +1-=1 as n—> oo,
i—1 Tt jE=1 cel | =1 |i=1 1, oyl

The last inequality follows from the monotonicity of the basis {#:. The last limit
again [ollows from the continuity of the coordinate functionals.

i i
Sinee X iz boundedly complete, we may conclude I.hatl ’f']] defines an element

i
[ 3] Les

ll:’.!il
If some of the ¢, =0, say {¢ 1, then if T =y, it follows that all g, are zero.
The proof Lhen proceeds as ahove, where all sums avold the mdices -[aj}.

of X, The inequalily shows thal I8 in Sy,

Temark, The Theorem and proof are valid for X =1, where each w, is replaced
by the characteristic funclion of the set {i}.

Lemma 14, The sam of twe fully compect operators need not be perfectly compact.

Proof. In Lemma 6, let ¥ = I, anil consider the operator 7 defined there. We can

write 7 =7, = T, where T, ={Xe)ju, and Ty =T —7,. To see thal ¥ iz fully
compact, note that | T | l-a | =X |m;| =|x]| so T {Ss) 15 contained in the
compact set K — {euw, 1 ¢ E} where ¢ is a scalar. However, T\ {cu;) = ¢ u; 50

T,(S;) = K-
Now T, — /U, where U, is the diagonal operalor defined by

5 b
[z = .

4

1 R
iy - Yo My T
and 7 is the isometry defined by {w; = w,.,. By Theorem 13, 17, is fully compacl. Hence
by Lemma 12(i), 7U, = T is fully compact. Since ' is not perfectly compact, fha
Temma iz provern.

The next Lemma supplies additional evidence of the pathology associated with
the concepls of fnll compactness and perfect compactness.

Lemma 15, Let N,V and Z be normed linear spoces.,

(i) {f B: XY i bounded and F:Y +Z 15 folly compact, then FB need not be
perfectly compact.

iy Ij T* is fully compact T may fail to be perfectly compact.

(i) The uniform limit of jully compact operators reed not be perfectly vompact,
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Proof. To establish {1), let B be the injection i of ¢, into [, defined by i{z) = .
Let #:1,—1, be defined by F{{r}) = ;:. ¢. DBy the remark following the proof of
Theovern 11, F iz fully compact. But 7' 8 is the operator T constructed in the proof of
Theorem 7 and is not perfectly compact.

For an example of an operator 7 which is not perfectly compact, but whose

. )
conjugate T* is fully compact, let 7:e,— ¢y be defined by T({z) ={'ﬂ—fi. Then

2r
T*: 1, =1, s given by T*{{x]) _[ and is Tully compact by Theorem 13, which
establishes (ii). '

r;'il
2|

i

¥
i
2'. [

It iz easy lo see that each of the operators 7™ defined by T ({x.}) =
is fully compact and since T T unilormly, (iii) is proven.

)
s

M
|

P

Definition 16, 1f X and ¥ are normed linear spaces, an operator 771 X — ¥ is totally
hounded if (5,) 15 a Lotally bounded set.

The nexl lemma lists some elementary facts about the relation bebween totally
bounded operators and compacl operators. The proofs are straightforward and are
orilled.

Lemma 17. (1) If Y is complete, T is totally hownded 0 and only if it is compact.

(1) Compact operators arve totally bounded.

iy If X and Y are Bspaces, then T is compact if omd only if the reduced
aperator Ty (see Definition 1) s dotally bonnded,

(ivy If X and Y are B-spaces, 1 is imperfectly compact if and only if the wssocioted
s delally bounded hol wol compact,

(v) The totally bounded operators T{X, Y] are a snbspace of he bonnded operators
B(X,Y). When X =Y, T(X, X) is a two-sided ideal in B(X, X). The subspace TiX, T
is closed in B(X,Y) with the unijorm topology. The compact operators K(X,Y) are dense
in T(X,Y). If ¥ is complete, T(X,Y) = K(X,Y). If Y is not complete, K(X,Y) may
operator 1y or may ot be properly condained fn T{X,Y).

The concept of totally bounded operator serms to be the natural generalizalion
to normed linear spaces, [rom B-spaces, of the concept of compact operator. Lemma 17
shows us that the sludy of imperfect compactness is equivalent to the study of the
diffevence hetween totally hounded and compact operators.

Theovem 182), Jf X and ¥ are normed linear spaces and T2 X = ¥ (s totally bonnded,
1% g fully compact,

Proof. 1f we complete X and Y and extend T Lo the completion, the extended
operator is compact and its conjugate Is also ™. Thus we may assume that X and ¥
are complete and that 7' is compact.

By [4, VI.5.8], 7* is continuous when restricted Lo (Sy., 7p) > X¥, where 7,
is the relativized X topology. By Alaoglu’s theorem [4, V. 4. 2], (5., 74) 1s compact.
The proof continues in Lhe same way as that ol Theorem 9,

One might wonder whether Theorem 18 will provide examples where X 1z not
reflexive and all the compact operators from X to a fixed ¥ are fully compact. The
result of [7] is that when X is a H-space which iz not reflexive, there are conlinuous
linear [unetionals z* € X* which do not attain their supremum on 8. Thus we can
always manufacture one dimensional operators which are not fully compact.

Ty This Theerem iz due to 19, Laeey.
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Alternately, Theorem 18 will provide such examples only if X and Y are conjugate
spaces and further, all the compact operator from X to ¥ are conjugate operators. The
nexb Lheorem shows us, however, that all the compact operators are conjugales 10 X s
reflexive, henee no new examples are oblained lrom this line of argument,

Let X and ¥ be Banach spaces. Let B{X,Y) be the set of bounded operators
from X to ¥ oand K(N, ¥) the seb of compaect operators. Let € B(X, ¥) - B[F*, X%
be defined by {7 = T'*, It is well known that @ is a linear isometry into, and that
G{K(X, Y))= K(Y* X7).

Theorem 19, £ X re o normed Unear space and Yo o Bavacl space, the following
slatements ore r*.jru.rjwrlrw..f.'

(1} ¥ iz reflexioe,

(i) ©(B(X,Y)) = B(Y* X*).

(i) @(K(X,¥)) = E(¥* X¥).

Prosf. First we show that if Y is not reflexive, @{B(X,¥)) == K{¥* X*). Let
T o= ai(x)y, define a one-dimensional range operator in Z{X, ¥). Then

Try*a = y* To = ay(=) " () so TPy = % (y) af = (Jyi) (¥7) 23
and all one-dimensional range operators in B{Y*, X*) of the form (J, y,) {-) # are adjoints.
Suppose y5* € 4 (y). Consider 0% defined by U*y® = yi* (*) of. Then 17#* 1z delined
by Liddpk gl 7% o B G o TF U7% 15 Lhe adjoint of an operalor 7, then sinece
L = J 0 [4, page 479, Lemma G, if

e O A e =R ) e B bR

Second, we show that if V is veflexive, @ 15 onto. Let £7% € B{Y*, X*). Consider
Iree £ BiX* ¥#*) defined by I#*p%* — 2** 7%, Then the equation T**J, = J, U deter-
mines an operator 7= ST € B(X, YY) becaunse R{U™) < ¥¥* — J (V).

We compute 7% and hope 7% = U, TFy% — p*(J7 U0 s0

¥y p =gt Ly U T a) = TP (T ) i = {F ) %4>

g UFy* = FTHy* and T+ = T*.
Third, nole thal equality in (i) implies equality in (iii) because ' is compact it 1'#
18 corm i,

The equivalence follows from the three stademends we have proved.

Remark, When Theorem 19 12 uzed in conjunction with operator representation
theorems which appear in the literature, it yields a number of operator representation
theorems which do not seem to appear in the literature. For example, il is well-known
[12, page 278, Example 3] that if 1 <2 ¢ <2 e, Lhere is a {canonical) 1 — 1 coreespondence

between the clemends A of K(l, 1) and Lhe infinite matrices {«;) satislying

oo 31 a
Eagl :.'-’ < oo and also lim ¥ | e |T=0

L

All = S |
H p
uniformly in j.
A corresponding representation theorem for Kl 1.), 1 < ¢ <2 oo, does nol seem

Lo be well-known [4, page 548, Table VL. B]. We prove such a theorem to illustrate
Lhe idea.

dournnd e Mallemadik, B, 217, 11
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Theovem 20, /f | < g < oo, there is a (canonical) 1 —1 correspondence between the ele-
ments A of K{l, 1) and the infinite matrices (a.;) satisfying

x

i L
4}l = sqpl Xlauf|" <cc and also lim X | a;le =0
i U=1 a

untjormly in i -

Proof. By [12, page 221, Ex. 6], lthe conjugate of operators in B(l;, ) are repre-
sented by transpose matrices. By Theorem 19, @ maps K(I,, [,) onto K({l, [,) so
K{l 1.} is represented precisely by these Lranspose malrices, Applying thiz to the
theorem for K(l,, 1) gives Theorem 20.

Using Theorem 19, the only lacl we require in addition to a known representation
theorem for B{X.,Y), K(X.Y), B{(Y* X*) or K(Y* X*). with Y reflexive, is 1thal
we ean deduce. from the given operator or conjugate operator, the representation of the
corresponding conjugate or preconjugate operator. If this holds, representation theorems
which are unlisted in [4, Tables VI. A. and VI. B.] can be deduced from those that
are listed, as follows:

B(l,, L) from B{L,, L), | < p < co, provided L' = L
Bl L,) from B(L, 1), 1<p<occ, provided LY == L
B{l,. L,) from B(L,,1). 1 <p < <.

Be, L,) and B(e,, L)) from B(L,. 1), 1 <p < co.
K{l,. L,) from K(L,. L), 1 <p < cc, provided L} — L_.
Kie, L)) and K{g,, £} from B(L, 1), 1 <p < oo,

v "

=

I R Arterburn has developed a similar theory of weakly perfectly compact
operators, to appear. He kindly supplied the proof of the third stalement in Lemma 4 {ii).
A. Carver informs us that he independently had proved a theorem (unpublished} equi-
valent to Theorem 19,
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