SOME BANACH SPACES CONGRUENT TO THEIR CONJUGATES
. E. 0. TroRP

Mazur remarked that there are separable infinite dimensional Banach
spaccs which are congruent (i.e. isometrically isomorphic) with their
conjugates [1; page 245]. lam notaware of the reference to the example(s)
Mazur had-in mind. In [3; page 195] the term * self-conjugate space ™ is
introduced but not defined. it merely being noted that L,(0, 1) is self-
conjugate becanse it is congruent to its conjugate and that (notation
from this point follows [2]) I, and [, are also self-conjugate.

This suggests considering the general question “ Which Banach spaces
are congruent to their conjugate?””. Theorem 1 describes some of these
B-spaces. Congruence of spaces will be denoted by equality.

TrmoreM 1. Let (X, |.]) be any B-space congruent to X*%. Let ||.]

be a norm for the real plane R* which coincides with some positive sealar
multi;n!'e ¢ of the Euclidean norm on the non-negative gquadrani. Let

= (X @ X*{].[), where [|(z, 2%)| =||(=], |z*)}|. Then Z and Z* are
conyrue:zﬂ
FProgf. Since Z* = (X @X*)* and AY‘*J““-X**=X*@IE XaoX*=7%
it suffices to show that (Y@X=®)* = Xsq X =

Given =¥ 2%, we define zlﬂel*, 22 ¥e XNE* by zﬁ{:r]l:z*({:r, D}),
2% (x%) = z*({ﬂ, :r*})_ and consider the mapping ¢ of Z# onto X2t X*=
given by ¢(2%) = (5% 2,%). It is easy to verify that & is a linear iso-
morphism onto. It therefore suffices to show further that it isan isometry.

" We have

|2%[ = sup {22 (x, 2%)}: [(=]. lz*]] < 1}
=sup {{z¥(z, 0)|--]z*(0, z%)|: ||(=|, [=*]) <1}
— sup {2,%(2) -+ 7% ¥)|: <x| ) <1}
—sup %] Jz|+2* o3| [, |2*)] <1}
== [=*DI
= l(=*L [z*)],

where we let (B2, |.]") be the normed conjugate of (B2 .-
To see tne ﬂcmnd equality, note that <7 is evident. But each term on

the right appears on the left if we replace x by » sgn (z*{x_. {}}) and z#%
by x*® sgn (z*{ﬂ_. ;:-:’3}) where for any scalar r¢™ sonref® — &= if v -2 0 and
sgnret? =0 if r=0. Henee = holds also, so we have equaiitv
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In the fourth equality, <C is again evident. To see that > holds,
suppose >0 is given. Then there are vectors z, and z,* such that
5% 2] > (3%|—9)|7| and [2,*2,%]> (%,*|—0)|z,*| and hence for
|2o| and [2,*| <¢, in particular when [ (|z,], | 2,*)] < 1, we have

[21% 20| = [2,*] | 7| —ce, |z=*a:o_*1 = |2g*| [ 2g*|—ce.
(*) Therefore  [2,®2o|+|2,%2)*| > |2,*| || +|2,™] [ %*|—2ce.
Now
sup (5% |z]+|n*][=*) = sup (a[z*|+b|z*)

Hor =t a1 i, b1
where a and b are non-negative scalars. But if we replace x, by ax,/ z,|
and ,* by bx,*/ x,*|, we see that for any fixed r, and x,¥,

sup  ((z%]|%o|+H]z®[ [%*) = sup (a]z®|+b]z*%).
(i ARE A E I, Bl
Hence by taking suprema of each side of (¥*), we find that the left side of
the fourth equality is = the right side —2ce. Since ¢, and hence ce, is
arbitrary, the left side is > the right side, so the desired equality is
established.

The fifth equality follows from the definition of normed conjugate.

The sixth equality is evident for positive multiples of the Euclidean
norm. Lemma 2, below, establishes it for the more general norms
hypothesised in the theorem.

Lexya 2. Let || be a norm for R? which concides with a positive scalar
multiple ¢ of the Euclidean norm on the non-negalive quadrant. If (B*,[.]")
is the mormed conjugate of (B2, |.]]) then |.}’ also coincides with a positire
scalar multiple of the Euclidean norm on the non-negalive guadrani.

Proof. 1t suffices to consider the case ¢= 1. In this case the unit
sphere is a subset of {(a, b): max (|a|, |b]) < 1}. If not, there is an (a, b)
such that || (o, b)]| < 1 and either [a| or |b] = 1. We may suppose without
loss of generality that b> 1, a < 0. Then any segment joining (a, b) to
& point of norm 1 in the posifive quadrant which is sufficiently close to
(0, 1) “passes over™ the point (0, 1). But cach point on the segment
has norm less than or equal to 1, contradicting the fact that [ (0, 1) = 1.

Thus the supremum of any functional in the non-negative quadrant
of (B2, ||.|") is attained on that part of the unit sphere of (R2, |.]) lving in
the non-negative quadrant, hence ||.|’ coincides with the Euclidean norm
in the non-negative quadrant.

ERemark. There are as many norms ||.}| for RB? of the type described
in the lemma as there are convex monotone functions joining (—1, 0)
and (0, 1). ) -

One might be tempted to conjecture that Theorem 1 i valid whenever
(RLED=(R1.D). for example when [l(a, b)i=a|+]b]=]|.], and
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(@, b)|' = max ((a],[b])=|.]=. The next lemma disproves this con-
jecture.

Lemma 3. The spaces
{_‘IIHEI!}“E i‘}l}s S {Ilﬂ@l:ﬂ“:r |'El-ﬂ} ﬂﬂd {111‘@:&1“: !*;1]:
taken over the real scalar field, are nof congruent when n = 2.

Proof. The spaces are congruent if and only if the sixth equality in
the proof of Theorem 1 holds. Thus the problem is equivalent to showing
that (I,*@1." |.l.) is not congruent to ([,"®DI.", |.L)-

Congruence preserves extreme points, so it will suffice to show that
(L*@®1." |.|.) has 2nx 2" extreme points while (,*@1.", |.|;) only has
2n-}-2" extreme points. because 2n > 2" > 22" for n = 2.

Denote the unit vectors in I,™ by e, 1<<i<n, and in I.® by e,
n4+1<i < 2n. We assert that the extreme points in (I;*@L.", |.|;) are
precisely the 2n vectors +-¢,;, 1 <01 <" and the 2" vectors +e_ ,+...Je,,
which can be obtained by arbitrary choice of +.

It suffices to consider points = of norm 1 and test segments with end-

points 3, z of norm 1. Let ¥ [x;]4 max |x;/=1, and similarly for
i=-1 R+ 1=ZigEn

“y=(y,) and z = (z;). and supposze x;=ay;+(l—a)z; for 1 Ci<2n. If

x is extreme, |x;l=¢, n+1<1<2n, is easily scen to be necessary.

Further, either ¢ =0 or ¢=1. If not, then 0 << ¥ |x;/=¢ <1 and for
i=1

some 4, such that 1 <i;<n, |z,]=d>0. Then if Ar is the vector
defined by (Az);, = (min(l—¢, )z, ==0, 1<i<n and i#i,;
{Az),= (min (1—e, f]) x;.n+1<i < 2n; then x = (x+Ax)/2+ (z—Ax)[2
where |zLtAx|=

Two cases remain, They are ¥ la|

i=1
r=¢,l<i<n: andiz|=1Ln+1<ign, which is extreme if and only if
T=Le, ., %+...~¢€s,. Where the + signs may be chosen arbitrarily.

We further assert that the extreme points in ([,* & 1.7, |.|.) are pre-
cisely the 2n x 2® vectors of the form 4-e,4e, 4. 265, where | <i <n,
which can be obiained by arbitrary choices of 1.

The proof of the last statement is similar to the previous proef and
so it has been omiited.

= 1, which is extreme if and only if
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