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Introduction. The purpose of this paper is to establish the follow-
ing theorem.

TueoreM. Suppose U and V are Banach spaces and thal there are
bounded projections P, from U onto X aud P, from V onio Y. Then
there are no bounded projeciions from the space of bounded operaiors
on U into V onto the closed subspace of compact operators, in the jol-
lowing cases:

1. X is isomorphic {1] to #?,1 < p < oo; Y iz isomorphic to ~9,
l1<p<qg-=<rco or ¢ or c.

2. X is isomorphic fo ¢,; Y iz isomorphic to 7=, ¢, or c.

3. X 1is isomorphic to ¢; Y is isomorphic fo .

Notatio¥. If X and Y are Banach spaces, [X, Y] is the set of
bounded linear operators from X into ¥. -~ is the set of bounded
sequences with the sup norm.

A space X is said to have a2 countable basis if there is a countable
subset of elements of X, ealled 2 basis, such thai each z € X is uni-
quely expressible as

= Ep
=1
in the sense that
limflz— 3 E&mll=0.
o =1

If X and Y are spaces with countable bases (p,) and (vr,) respectively
and A is 2 bounded linear transformation from X into Y, then A ecan
be represented by an infinite matrix (a,,), with

A‘P_q' - ;i:ﬂu";’g
-

[2l. In what follows, the basis used for ~* will be given by @, =
(0,0,+++,0,1,0,0, --+) where there is a 1 in the jth place and 0 else-
where. Similarly for +,. The matrix representations of operators will
all be with respect to these bases.
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Proof of the theorem. The details of the proof are given below
only for X=/%1<p< o, and Y=/%1<p<qg< «. The prooi
for the remaining pairs is similar and is indicated in a remark at the
end.

DEFINITION. Lei E be the fonction on [#% <, 1< p=<q < =,
which sends an operator whose matrix is (a,,) into the operator whose
mairix is (a,8,), i.e. the non-diagonal mairix elements are replaced by
zero and the diagonzal clemenis are unaliered.

LeMma 1. E is @ projeciion with ||E|| =1, range the diagonal
operators, and null-space the operators with a, =0, all 1.

Progf. E is additive and homogeneous as easily follows from [2].
E:=E, and the characterizeiion of the range and null-spaces are ap-
parent.

From the chain

< >|All= sup_|lAzl, > supllAp, ||
= 5‘}9 Il ?_,‘ai, Yy lly = 51:}13" [l sl = H?N sy
= sup (Blauki?V'* 2= sup (ZlaL)e=]|FA|.

s lxil, =2

where the last > is by Jensen’s inequaliiy, we see that E sends bound-

ed operators into bounded operators and, further, [ E|j=1. Also
|EA]| <suplay] .
E

In fact,

|EA|| =suplay|
b |

because

HEA| = m:lpi!EA%.’:' =suplayl.
J

LeMMa 2, The mapping v from the set of diagonal operalors onto
<= defined by vle,) = (a,, =, -++) is an isometry which carries the
compact dicgonal operators onio ¢,

Proof. That v is an isomeiry from the diagonal operators onto ~~
follows from the previous observation that ||EA|| =sup,|a..|. Hence
it suffices to show that the compact diagonal operators are exzctly those
with the additional condition Iim,{a,| = 0. This condition is necessary:
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otherwisze for some £ >0 there is an infinite index set I such that
l@, | == whenever i € I. Then the bounded sequence (v}, would be
carried into the sequence (@, \r)ie;» Which has no convergent subsequence,
showing (a;) is not compact. The condition is sufficient because, if
llz]l, <1 then

- AT I o F i
(Slusal*)™ < (suplau izl < supiaul
=1 = izm

and [2; Th. 2] applies. The last inequality follows from Jensen's ine-
quality and our assumptions p < gq, ||z]|, < 1.

LEvMMA 3. Suppose X i3 a Banach space with a closed subspace
AN onfe which there is a bounded projection E. Let N be the null-space
of E. Let 3 be any closed linear manifold of X such that if f € 3 then
F=g+bh with ge PN and ke PNRN. Then, given any bounded
projeetion F onto P, EF is a bounded projection omio P N M such thai
NEFE<IE I FI.

The proof is an obvious modification of [3; Lemma 1.2.1].

Let $ be the set of compact operators, 2N the set of diagonal opera-
tors, E the projection of Lemma 1, and R its nullspace. In order io

apply Lemma 3 it remains to show: given any compact operator f, Ef
and 5 — Ef are compact. Ef is compact because, if f is compact,

1 5 €y

=3
E=m

I i - e .
i=lim Eia,,jﬂ) =0
i =

lim

uniformiy in §. This implies lim_|a..] =0, which shows that Ef is
compect. Henece f— Ey is compset.

To prove the theorem for [#7, /9.1 < p < ¢ < o=, assume there
is a bounded projection F from [/® %] onto B. By Lemmsa 3, the
restriction of EF to I is a bounded projection from M onto WM N . By
Lemms 2 there must be a corresponding bounded projection from =
onto ¢,. This contradicts [4; Cor. 7.5]. For the remaining X and ¥
pairs of the main theorem, the proof is similar except that the ex-
istence of expressions for || Al In terms of the mairix coefficients (e.g.,
see [3]) makes some of the work simpler.

Next we extend the theorem to [U, V]. Let E be the function on
[U, V1 defined by Ef=P.fP, for all f in [U, V]. E is linear and
homogeneous and bounded. E*f = P(P.fP)P,=P.fP,=Ef so E is
2 projection. The range of E is the set of operators g such that PgP, —
g and is isomorphic with [X, ¥Y]. The null-space of E is the set of
operators k such that PAP, =0. If @, is the projection I — P,, the
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decomposition f =g + h is given by

fF=+ Q.:'JA{R s Q} = P,fP, + (‘PLFF@] -+ Q.fP 4= Q@_fQ.r s
q h

If ¥ is compact, so are g and h. We apply Lemma 3 with X =
(U, V], 0 the range of E, & acting as the projection E of that lemma,
and P the set of compact operators from U7 to V. The conclusion is
that if there were a bounded projection F from X to 3, the restriction
of EF to 9 would be 2 bounded projection from WM onto T N M, con-
tradicting our result for [X, ¥1].

REMARK. The problem of finding a bounded projection onto the
compact operators is trivial when all the bounded operators are compact.
This happens, for example, for [/% /%, >p>g=1, [2, p. T00],
or p = o=, g = 1, and for [e, <7, [¢, 7%, = > g = 1. Whether there exists
a2 pair of normed spaces with 2 bounded proper projection from the
bounded operators onto the compact operators seems to be unknown.
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