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Partially bounded sets of infinite width’)

By Edward Thorp and Hebert Whatley at Tevine

1. Introduetion

Clark [2] introduces these notions for a convex subsel 4 of a real Banach space X
{13 A has finite width if A les between two closed parallel hyperplanes, 1. e if there 15 a
continuous linear funclional 2% on X and two real numbers « and § with & == 2*{x) = §
for all & in A, (2) A has [inite width in the direction & == 0 if thers is a constant w, such
that every line parallel 1o & intersects A in an interval of lenglh no more than w,, 1. e
if axr 4+ y and fx + y belong to A then | §—a | =< w_, and (3) A is partially bounded
{by ) if there is a finite leagt upper bound K for the radii of spheres contained m A, In
what follows, wie azsume A is closad.

Clark shows that these conditions are equivalent when X s finile dimensional and
aglks whether this is true in an infinite dimensional Hilberl space. (Tronically, the closure
of the set IV on page 615 of [2] furnishes an example of a closed convex body in separable
Hilbert space which i partially bounded by 1 but which is of finite width in no direction.)

The implications (1) = (21 (3) are easy to establish. We show here that under
various hypotheses, satistied by many and perhaps by all infinite dimensional Banach
spaces, none of the other possible implications hold. Specifically (1) there are partially
bhounded elosed convex bodies of infinite width in any Banach space which has a separable
infinite dimensional quotient, and (2} in any Banach space which has an infinite dimen-
sional quotient having a Schander basis, there 15 a closed eonvex set of infinite width
but of finite width in some direction.

We note that Clark’s discussion of the finite dimengional case is imited Lo convex
bodies, e convex sels with non-void interior. This is reasonable beeanse a convex set
with void inlerior is contained in a proper il}-‘]](‘.f'f‘r]:ltll’31ijr1 Lhe linite dimensional case.
This shows that it trivially has all the properties of interest. [t seemed to us possible
but unlikely that Clark’s interest was limiled to convex bodies in the infinite dimensional
case. However, we do give convex body examples whenever possible.

2, Parlially Bonnded Sets of Infinite Width

Theorem 1. Let X be an infinide dimensional Banach space which has a separable
fnfinite dimenstonal quotient. Then X contains a closed conver set of infinite width wihich
18 partially bounded by 0.
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FProof. First assume that X is separable with {z,} a linearly independent set whosze
gpan is dense in X, We apply a generalization of the G]*ﬂm-‘ichmidt process: Let «F he a

continuous linear functional with & (z,) = 1. Set 2z, = — W and zf = || &, || =F. Let
Yy, = @, — i {ay)z, and let %2 be a continuous linear Fum.ﬁ,mnal with ¥¥(z,) =0 and
YE(ys) = 1. Set 2, =W:: and =¥ = ||y, || ¥ Continuing we obtain sequences {z,}
and {z¥} with

1) 23 (Zn) = G

(2 span {z,, ..., 3,) = span (x,, ..., x,}

That such a biorthogonal sequence could be found in each separable Banach space was
known to Banach ([1], page 238). We note in passing that [5], page 214 claims it is an open
question as to whether each separable Banach space conlaing a set with dense span but
having no proper subset with dense span. The set {z,} above is such a sel.

Define the closed convex set A = {xin X:z¥(x) =0, n =1, 2,...}. Suppuse x*
is a non-zero continuous linear functional. Since {z,} has dense span, 2%(z,) =+ 0 for some
index m and, because az,, is in A for each positive number 4, #*({A) is unbounded. Thus
A has infinite width.

To zee that A is partially bounded by :ru'n agsume that for some r = 0,

r
{Z:llz—=x,|| <r}=A. There is a vector ,,u—,z,u,w” with || 2, — 2, |1 = -3 thus

T2
x o 15 ;
{.‘r:: 1E: —2} . But, this is false as ||il—; :p_1+zﬂl|—zqi ﬁj vizl,
r
¥ s (—Tz i ) - 0. Thig establishes the theorem when X is separable,
h | L3

X :
ra separable and in-

. X
uct the set 4 in 57 28
deseribed above and let B = (7' A). The set £ is closed, convex and is partially bounded
b @ (1 e. has void interior) sinee A has voud interior and () is an open map.

Next, suppose that there is a closed subspace M of X with

finite dimensional. Let ¢ X

To see that & has infinile widlh, lel 2* == 0 be a continuous linear functional on
X. There are two cases, |f 2% iz not zero when resteicbed Lo Lhe subspace M, then, Qi]ml

M= B, 2% (85) iz not hounded. On the other hand, if 2% ( M) = 0 then 2% is in WL = |—--j—J i

*.:a:

i?' with j{z 4+ M)} = x®{x} for all x. By Lthe conslruclion
of A, f{A) 15 unbounded and thus #*{ B} is unbounded. Hence B is the desired sel in X,
which completes the proof,

Lo there s a non-zero | in

It 1s an open question [7] whether each infinite dimensional Banach space has a
separable infinite dimensional quotient.

In [5], page 599 we asked whether there is a Banach space X with the property
that in A* weak* and norm convergence are the same for sequences. [T there is such a
space X, Lhen it does not have a separable infinite dimensional quotient. To see this let

M be a closed subspace of X with % separable and let ¢ X — ;;; be the quotient map.

' X YR
Each bounded sequence in I: i _},J containg a weak*® convergent sequence {f.} ([3], Theo-
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rem 1, page 426) and {Q% /¥ iz norm convergent by hvpothesis. Henee Q% is a compaet
operator, so ¢ is also compact and, being onto, must have a lnile dimensional range.
Queslion: Does every infinite dimensional Banach space contain a partially bounded
closed convex set of infinite width ¥
We modify the above example to have A a closed convex body by using the fol-
lowing lemma.

Lemma 2. Lel X be o Bonach spoce with closed unit sphere 8§, A a elosed conver set
partially bounded by K, and A, = el(d + £8) for ¢ =0, Then A, is partially bounded
by K+ &

Praof. Since int(el{A + £5)) = int{4 + £8) ([9], Theorem 1. 16, page 13), it
follows that A, is partially bounded by K - ¢ il 4 + &5 is partially bounded by K 4 &

It is evident that A 4 28 iz partially bounded by a constant which is at least
K+ & We wish to show that it is exactly A -} & Suppose instead that it is parlially
bounded hy K 4 & - &, 0 = 4 = oo, Then there is a sphere B in 4 4 &8 of radius
E 4 e+ 48,0 =4, =4 The center p of B lies in A, for if, instead, it were in A + &5
but nob in A, there would be a continuons linear functional ¥ of norm one such that
a* (p) = 2*({A) ([3], Theorem V. 2, 12, page 418). Then

sup o () z in B} = 2*(p) + K + = + 4,
since sup {£*{x): ¢ in B — p} is the radius of 8 — p. Then
#p)+ K +et+dy=supfz*(x):zin B} Z ¢ +supfa*(z):xin A} = 2*(p) 4+ &,
a contradiction,
Sinee p is in A, the sphere cenlered al p of radius K + —r)" containg a point g not

2
in A, Choose a continuous linear functional y* of norm one such thab ¢*{g) = y™*(A).

A : : ; &
I'hen by an argument like the preceding, any sphere centered at g with radius ¢ + -

g
cannot be contained in 4 + 8. Thus there are points within
; i o d ) !
K +T“+E—Tj'_f< + &4 4,

of p which are nob in A 4+ &, This contradiction completes the proof,
Lemma 2 and Theorem 1 vield:
Theorem 3. Lel X be an infinile dimensional Bunech spoce which has o separable

infinite dimensional guotient, and let K =0 be any non-negative real number, Then X
contains o closed corves body of infinite width which is partiolly bounded by K.

3. Finite Width and Finite Width in Some Direetion

The next Theorem, although simple, is crucial for our characterization of the pro-
perties of finile widlh and [inite widlh in some direction.

Theorem 4, Let X be o Banach space and A a closed conver subset of X, Then

{a) A is of fintte width if and only if cl{Ad — A} i not all of X,

(b) A is of fintte width in ihe direction x i and only if for some sealar «, xx is not in
A— A, and
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(o) i A is a closed conver body, then @t is of finite width in some direction if and only
if it 15 of finite width.

Proaf. {a) IF o 15 not in el{A4 — A), then by the separation Lheorem ([3], Theorem V.
2,12, page 4185) there iz a non-zero conlinuous linear funetional = with =% (&) = 2% (z)
for each z in A — A. From the symmetry of 4 — A, ##{A) is bounded s0 4 is of finite
width, Converselv if A iz of finite width, then there is a non-zero continuous linear fune-
tional w* with | @*(e) | = K for all @ in A and so any @ with | &* (=) | = K 15 not in
el{Ad — A}

{h) Suppose that A is of infinite width in the direction x. Then for every scalar
there are veetors a; and g, in A with ax = @y a,. On the other hand soppose that for
cach sealar &, ax — a; —ay 15 in A — A, Then the line joining o, = o, + «x to a, is
in 4 and is a segment in the direction z of length =, Thos A is of infinite width in the
direction .

(o) As we have noted, it is easy to see that if A is of finite width, say

oy = w¥ e} = oy

for @ in A, then it is of finite width in some direction; in fact if #%{z) = 1, then ax | ¥
and fx - y both in A imply that 18— a | 2 &, — a,.

Suppaose Lhab A4 12 a closed convex body of finibe widlh in the direcltion @ By (b)
there iz a scalar « with ax not in 4 — A, SBinee 4 — A4 is a convex body, there 12 a non-
zero continuous linear functional &% with z*% [xx) = 2%{A — A) ([3], Theorem V. 2.8,
page 417). Since A A 18 symmetric, ¥ (— xx) = 2*(A Ay Thus 4 — 4 is of finile
widbh and &0 A Is of Dnile widlh,

Theorem 3 and Theorem 4 (e} vield:

Corollary 5. Let X be o Banach space with an infinite dimensional separable quotiend.
Phen there ds o closed conver body in X whkich is partially bownded bul nol of Jieile aidilh
ore ey direction

1. Clark’s Theorem

Using Theorem 4 we now give a comparcabively briel and elementary proof of
Clark’s principal result that (1), {2) and (3} are equivalent properties in £% and so are
equivalent in any finite dimengional normed linear space.

Theovem 6 {Clark). The properites (1), (2} and (3) are eguivalent n &7

L proj YA i

Proof. IT A has void interior, il is contlained in a proper subspace ([4], Theorem 4,

page 161 and then (1), (2} and (3) all hold for A. Assuming then that A is a body, {1}
and (2} are equivalent by Theorem 4. Since it is easy to see that (1) implies (3) it remains
bo show Lhat (3) implies (2), We show that not-(2) implies not-(3).

Suppose A is a convex subsel of infinite width in every direction and let M =0
be otherwise arbitrary. Since A has infinite widlth in esach direction we mayv choose a
gegment in 4 of length M. Choose a basis {e,, ... e, for £" so that the segment is
M
.

length M parallel to e, and so of the form 2, -+ E

2
@, , M : _ .
the segmenl ! - ey, €], oblained from averaging ) and

[— &, e,], where [&, ] denoles Lhe line joining @ and y. There is a segment in A of
[— e, 2,]. Since A is convex 1l containg

M
5 T g2 == 5 [—e,, &), and the
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segmenl —'rll - -::- [ €., 5], Oblained from averaging O and =, + 5 [—es, €] By
translation we may choose a new basis and so suppose that x, = 0.

Pmceeding by induction, suppose for 1 = & << n, A conlains the k-dimensional

M .
Yeross™ . There is a segment @, + - [— €, 40 2yq] In A and s0 A con-

2*[ P
kil

Lains t-ht (k + 1)-dimensional “cross™ ';* + Ll €;,¢] and by a changr: of basis

'Jl’-l 1 I

we may suppose that x, — (. Finally, A contains the convex hull of U on [ » €]

relative Lo a suitable basis. Thus, since M is arbitrary, A contains -:rlnlran]v Inrge rep-
licag of the unit sphere in I}, hence it contains arbitrarily large E" spheres and is nol
partially bounded.

5. Finite Width in Some Direction Does Not Imply Finite Widih

We finally show, under hypotheses perhaps stronger than Theorem 1, that pro-
perties (1) and (2) are nob equivalent in general, in contrast to their equivalence for
convex hodies as shown in Theorem 4,

Theorem 7. Let X be a Banack space having an infinite dimensional quotient space
with a Schauder basis. Then there is a closed conver set in X whick is of infinite width but
has finite width in some direction.

:} of X which has property
(2) but not property (1), then @7'(A) is such a set in X, ¢ heing the quotient map of

Pronf. It 15 easy to see Lhat if A s a sel in a quobient

X onto ':} So it suffices Lo construct such a counter-example in any infinite dimensional

Banach space having a Schauder basis.

Let X be infinite dimensional with Schauder basis {x.}, ||z, ]| = 1 for all a. First
suppose that there is an element ¥ = X, x, with X [_1,,| divergent. There is a per-
mutation @ of the integers with 2 a,, — 0,y | divergent, Define the continuous linear
functionale =¥ by aX (X 8,2,) = B -ﬂ, iy and let 4 = {yin X: .L*{y} = 0 for all m}.

5l

The set A is a closed, convex cone. The vectors x,, = X = — .!, g arein A — A

i=1 i=1
and A — A is then dense. Thus A is of infinite width by Theorem 4.
We claim that x = X,z is not in A — A and therefore, by Theorem 4, that A
has finite widlh in the direction 2. IF instead # — a, — a,, with 4, and a, in A, then

| 2E(z) | = z2(a) + 2X(a;) = =X (3), withz=a,+ g, in A, Let z = 2 z,z,. From

iy~ a1y = | By — B iy |
we have
Zuty = Tty T | Oy — Oy | = 3 + Loy — 8y | + [ Sy — oy | 2 # - -
o

Ty L o
= Zapm41) 5 ?.'ﬁ; | aiiy Faii 1y

which is a contradiction since the right hand side tends to infinity with m.

There remains the case where X | 8, | converges for each X8 z_ in X. Then the
map which takes each {# } in [, to Z 8 _x_ in X i= a one-to-one conlinuous map of I, onto
X and X is isomorphic to ;. It will thus be enough Lo establish the result for /. There

Towrnal fir Mathomntik, Band 248 15
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is o continnous linear map of I, onto, say, I, ([6], page 63) and as an appropriate connter-
example has been consiructed in [, above, this generates the desired example in [, as
mentioned in the beginning of the proof. This completes the proof.

Lek & be a compact Hausdor[l space containing infinitely many points and con-
sider the Banach space ¢(S). It is interesting to construclk directly natural counter-
examples in €'{5) showing that (3) =+ (2) and that (2) = (1).

First, let s, be a point of § which is not isolated and let [ = {f in C(S5): [(sy) = O}.
Then I is a quotient of C(8) and the set 7y, = {fin /:f = 0} is a closed convex set in /
having void interior, and g0 partially bounded. The set T is of infinite width in each
direction in J. To see this let g == 0 in { be given. Then for each M = 0, with f = M [ g |
we have ag + fin I for |« | = M. Thus 7, @ sp(1) is a set in C(S) with property (3)
but not (2}

Second, let {51,-} he a countable set of distinet points in S which form a convergent
nel i 8. Let

A={finC(8):f=0 and f(s,) — f(8,,) = 0 for all i}

We see that A — A is a subalgebra of C(S) which separates points and contains the
comstants and thus, by the Stone-Weierstrass theorem, is dense in C({5). So A 18 of
infinite width by Theorem 4, Let I, be a compact neighborhood of 5, with {17} mutually
disjoint. There are continuous functions f, on § with (a) f,(s) = 0 for s nol in U, (b)
0= 7, =1, and {e) f(s,,) = 1. Then for scalars {z} with limz, =0 and X |z, —3]|
divergent, g — X z,f,is in €(5) and one can show, exactly as in Theorem 7, that g does
not helong to A — A. Henee A is of finite width in the direction g.

Question. Does every infinite dimensional Banach space contain a closed convex
set which is:

{a) partially bounded but having finite width in no direction, or

ib) of finite width in some direction but of infinite width?
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