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INTRODUCTION

In the last decade it was found that the player may have the advantage in some
games of chance. We shall see that blackjack, the side bet in Nevada-style Baccarat,
roulette, and the wheel of fortune all may offer the player positive expectation. The
stock market has many of the features of these games of chance [5]. It offers special
situations with expected returns ranging above an annual rate of 25% [23].

Onee the particular theory of a game has been used to identify favorable situations,
we have the problem of how best to apportion our resources, Paralleling the discoveries
of favorable situations in particular games. the outlines of a general mathematical
theory for exploiting these opportlunities has developed [2, 3, 10, 13].

We first describe the favorable games mentioned above, those being the ones with
which the author is most familiar, Then we discuss the general mathematical theory,
as it has developed thus far, and its application to these games. Detailed knowledge
of particular games is not needed Lo follow the exposition. Fach discussion of a
favorable game in Part I motivates a concluding probabilistic summary of that game.
These summaries sullice for the discussion in Part I so thatl a reader who has no
interest in a particular game may skip directly to the summary.

References are provided for those who wish to explore particular games in detail.
For the present, a favorable game means one in which there is a sirategy such that
F{lim 5, = o) = {0 where 5, is the player’s capital after » trials.

PART I. FAVORABLE GAMES
l. BLACKJIACK

Blackjack, or twenty-one, 15 a card game played throughout the world. The casinas
in Newvada currently realize an annual net profit of roughly eighty million dollars
from the game, Taxing a price/earnings ratio of 15 as typical for present day common
stocks, the Nevada blackjack operation might be compared to a § 1.2 billion corpo-
ration,

To begin the game a dealer randomly shuffles » decks of cards and players place
their bets. (The value of # does not materially affect our discussion, It generally is
1, 2, ar 4, and we shall use 1 throughout.) There are a maximum and a minimum
allowed bel.

The minimum insures a positive probability of eventual ruin for the plaver who
continues to bet. The maximum protects the casino from lacge adverse fluctuations
and in particular prevents the game from being beaten by a martingale (e.g. doubling
up), especially one starting with a massive bet. In fact, without a maximum, a casino

! The research [or this paper was supported in part by the Air Foree Office of Scientific Research
through Grant AF-AFOSR 1113-66,

The paper is intended in large part to be an exposition for the general mathematical reader with some
probability background, rather than for the expert,
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with finitec resources can in general be ruined a.s. (almost surely) by a player with
infinite resources. The player simply bets enough al cach trial so that the casino is
ruined if it loses that trial, A practical way Tor the player to have infinite resources
would be for the casino to extend unlimited credit lor the finite time it might be needed.

The players’ hands are dealt after they have placed their bets. Each player then uses
skill in his choice of a strategy lor improving his hand. Finally, the dealer plays out
his hand according to 2 fixed stratczy which does not allow skill, and bets are setdad.
In the case where play begins from one complete randomiy shuifled deck, an approxi-
mate best strategy (i.e. one giving greatest expected return) was first given in 1956 [1].

Though the rules of blackjack vary slightly, the player following [1] typically has
the tiny edge of + . 10%. (The pessimistic figure of — .62%; cited in [1] was erroncous
and may have discouraged the authors from further analysis.) These mathematical
results were in sharp contrast to the carlier and very different intuitive strategies
generally recommended by card experts, and the associated player disadvantage of
two or three per cent. We call the best strategy against a complete deck the basic
sirarezy. Determined in 1965, it is aimost identical with the strategy in [1] and it gives
the player an edge of = 0.137%; [22].

Il the gzme were always dealt from a complete shuffled deck, we would have
repeated independent trials. But for compelling practical reasons, the deck is not
generally reshuffled after ench round of play. Thus as successive rounds are played
from a given deck, we have sampling without replacement and dependent trials, 1t is
necessary to show the players mosl or all of the cards used on a given round of play
before they place their bets for the next round. They can then use this knowledge of
which cards have been played boih to sharpen their strategy, and to more preciscly
estimate their edge. (The strateges for various card couniing procedures, and their
expectations, were determined directly from probability theory with the aid of com-
puters. The results were reverified by independent Monte Carlo calculations.)

For a given card counting procedure and associaled strategy, there is a probability
distribution &, describing the player's expectation on the next hand, provided ¢ cards
have been counted. As ¢ increases, I7, spreads out, (This 15 a theorem, whose proof
resembles that for the similar theorem in Baccaral, mentioned in [24], page 316).
This spread in F, can be exploited by placing large bets when the expectation is posi-
tive and small bets when it is negative, Part I indicates how best 1o do this.

If the basic strategy is always used, E(F,) = —+ 0.13 %, just as from a complete deck
But il an improved strategy. based on the card count, is used, E(F_) increases as ¢
increases, approaching values of one to twe per cent or more.

Ties, in which no money is won or lost, may be discounted, They occur about one
tenth of the time. Most, but not all, of the other outcomes result in the player either
winning or losing an amount equal to his original bet,

The conditional means E(F, | F._ ); k = 1,2,..., ¢, of the successive F, are non-
decreasing. The F, are dependent; in particular when a deck “goes good™, it tends
lo siay good.

Probabilistic summary

To a good first approximation, Blackjack is a coin toss where the probability p ol
success 15 selected independently on each trial from a known distribution F (which
is a suitably weighted average of the F.) and announced before cach trial.

A more accurate model considers that the p's are dependent in short consecutive
groups, corresponding to successive rounds of play from the same deck. Another
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more accurate ohservation is that insurance, naturals, doubling down, and pair
splitting, each win or lose an amount different from the amount initially bet, We dao
not consider this more accurate model in part [ because the improvement in resulls
is slight and the increase in complexity is considerable,

2. BACCARAT

The terms Baccaral and Chemin de Fer are used, sometimes interchangeably, to
refer to several elosely related variants of what is essentizlly one card game. The game
is currently popular in England and France, where it is sometimes plaved [or un-
limited stakes. It is also played in Nevada. The game-theoretic aspects of Baccarat
have been discussed in [11, 14]. The Nevada game is analyzed in [24] which includes
results of extensive computer calculations,

The studies of Baccarat show that the available bets generally offer an expectation
on the order of —1 %, The use of mixed strategies, to the very limited extent that this
i5 possible in some variants of the game, has but slight effect on the expectation.
Diespite the resemblances between Baccarat and Blackjack, the lavorable siluations
detected by perfect card counting methods are not sufficient 1o make the game
favorable. Thus Baccarat is not in general a favorable game.

The game as played in Nevada sometimes permits certain side bets. The minimum
on the side bets was observed to be 3 3 to § 20 and the maximum was $ 200, The bets
gither won nine times the amount bel or lost the amount het. The game was played
with eight well shuffled decks dealt from a dealing box, or shoe. Using the card
counting techniques described in [24], the side bets were favorable about 20% of the
time. When they were favorable, the expectations ranged as high as — 100%. The
expectation initially was about — 3% and as the number ¢ of cards seen increased,
the distribution £, of expectations spread out ([24], page 316) as in Blackjack, In
practice the betling methods discussed in part 11, in which the bet increased with the
expectation, doobled initial capital in twenty hours,

Unlike the Blackjack player, the Baccarat side bettor has no strategic decisions to
make so £(F.) does not vary as ¢ changes, When the expectation of the side bet falls
below a certain value, it is best to make a “waiting” bet on one of the main bets.
There are either two or four side bets, similar and dependent. How 1o apportion lunds
on the side bets is complicated by the fact that there are several of them. These com-
plexities are Lreated in [24].

Probabilistic sunumary

When only one side bet is available, the pay-off lor a one unit side bet is either + 9
or — . If p is the probability of success, we may suppose that p is selected indepen-
dently from a known distribution F and announced before each trial, When several
side bets are available, the situation is more complex. I illustrates the general setting
of [3], page 65,

Asin Blackjack, a more accurate model considers that the p's are dependent in
consecutive groups, corresponding to successive rounds of play from the same en-
semble of (cight) decks, It also considers the effect of wailing bets.

The situation here is more complex than in Blackjack. First, it is important to
expleit any opportunities of making simultaneous bets on two or more favorable side
ket situations. Second, the pay-off is never cne 1o one.
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3. ROULETTE

Roulette has long been the prototype of unbeatable gambling games. It is normally
regarded as a repeated independent trials process which generates at each trial
precisely one from a set of random numbers. In Monte Carlo these numbers are 0,
1.2,....36. Players may wager on particular conventional subsets of random num-
bers (e.g. the first dozen, even, {27}, etc.), winning if the number which comes up is
a number of the chosen subsel. A player may wager on several subsets simultancously,
and cach bet is settled without reference to the athers, The expectation of each bet is
negative (in Nevada generally — 5.26%, except for one worse bel, and in Monte
Carlo — 1.35%..) Thus it has been long known that the classical laws of large numbers
insure that the player will with probability one fall behind and stay behind, tending
to lose in the long run at a rate closc to the expectation of his bets.

Despite this, Henni Poincaré and Karl Pearson each examined roulette. Poincaré
{ [20]. pages 6970, pages 76-77; [21]. pages 201-203; [9]. pages 61-62) supposes that
the uncertainty in initial conditions (c.2. the angular position and velocity of the ball
and of the rotor at a given time) leads 1o a continuous probability density f in the
ball's final position. He shows by an arsument involving continuity only that if f has
sufficient spread, then the finitcly many final ball positions are to very high approxi-
mation equally likely.

Karl Pearson statistically analyzed certain published roulette data and found very
significant patterns. In particular Pearson says, *If Monte Carlo rouletie had gone
on since the beginning of geological time on this carth, we should not have expected
such an oceurrence as this fortnight’s play to have occurred gnce on the supposition
that the game is one of chance.” And again, “To sum up, then: Monte Cuarlo roulette

.. is. . . the most prodigious miracle of the nineteenth century.” I've been told that
it was later learned that the roulette data was supplied for a newspaper by journalists
hired to sit at the wheel and record outcomes, The journalists instead simply made up
numbers and submitied them. It was their personal bias that Pearson delected as
statistically significant.

It brings 10 mind David Hume’s essay Of Miracles: “No testimony is sufficient to
establish 2 miracle. unless the tesumony be of such a kind that its falsechood would be
more miraculous than the fact that it endeavors to establish. _ . . it is nothing strange
. . . that men should lie in all ages.™

Poincaré assumed a mechanically perfect rouletie wheel. However, wheels some-
times have considerable bias due to mechanical imperfections. Some observed in-
stances and their exploitation are discussed in detail in [25].

In Blackjack and Baccarat, we used the following fundamental principle: The
payoll random variables, hence the favorability of a game to an optimal player, depend
on the information set vsed to determine the optimal strategy, For instance, it used
cards are ignored in Blackjack. then we simply have Bernoulli trials with p =
4+ 0.13%. However, as more card counting information is employed, the distribution
of p spreads out (has more structure), its expected value increases, and il can be more
effectively exploited. The roulette system we now describe illustrates the use of an
enlarged information set.

Play at roulette begins when the croupicr launches the ball on a circular track which
inclines towards the center so the ball will fall into the cenier when it slows down
sufficiently. The center contains a rotor with a circle of congruent numbered pockets
rotating in the opposite dircction to the ball. The ball eventually slows and falls from
its track on the stator, spiralling inio the moving rotor and eventually coming to rest
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in s numbersd pocket, the “winning number”, Betz may generally be placed until the
baall leaves s track. This is crucial for what follows.

A collaborator and T tried to use the mechanical perfection of the wheel —the very
perfection needed to chmindle the bias method - to gain positive expectation. Our
basic idea was to defermine an tnitial pogition and velocity for the ball and roter, We
Then hoped o predict the final position of the ball in much the same way that a
phrnet’s later pogition around the sun 3 predicted From initial conditions, hence the
nickname “the Newlonian method™, _

The Newtoriign mcthed ocourred. to me in 1937, and by 1961 the work described
here had been completed, Althoush the wheel of fortune devies was mentioned in
LIFE Magazine, March 27, 1964, pp. 80-91, wepointedly did not mention the roulette
waork there. However, we da so in [22], page 181182, The Mewtonian methiod is also
mendigned in the signilicant boak by B, A, Epstein, Fhe Theory of Gambling and
Natistical Logie, Academi¢ Press, pp. 135-136, (1967).

The stator has metal defleviors pluced to scatter the ball when it spirals down and
the pockets are sgparated by verticn] dividers (“frets™) which alss introduce seattoring.
These scalterings were measured. and found to be far from suilicient 1o (rustrate the
Newtonin dpproach. However, therp were additional sotress of randomaess wlich
did. frostrate this approach. {We never satisfactorily identified these cawses and can
only speculate — porhaps the cayses included minuee imperfactions in track or ball or
high sensitivity of the coefliclent of friction 1o dirt or atmaspheric humidity.)

We were led to g variation we called the quuniom tmethod. IF 4 ronlette wheel is
tilted slightly the ball will not Gall from g secter of the track on the “high™ side. The
effect is strong with a ull of fust 0.3, which creates a forbidden zone of & quarler (o a
thired of the wheel, The nosn-linear differential equatton governing the ball’s motion
on the teack i the equation for a pendulym wiigh at first swings completely sround
its pivet, but is gradoally slowed by air resistangs. (It i3 illominating to sketch the
arbits of the equation. s indicated in [4], page 402, problem 3.) The experimental
orbits of angls sesps time conld be plotted eustly in the laboratory by taking a movie
af the system in motion, along with a Targe slectiic clodk whese hand sivept ol one
revodution per second!

The existence of a forbidden 7one partially quantizes the angle at which the ball
can exit, and henee quantizes the final angolar position of the Ball on the rotor. The
phsies mvolved suggests that the quariization is in fact very sharp: Suppose the ball
is moing to exit beyond the low point of the tilied wheel. Then it must have been
moving faster than a ball exiting at the low paint, so it reaches its destination seoner,
But it has also gone farther, and the two effacis tend to eawcel. They in fact cancel
very well. A similar argument shows that balls whith exit hefore the low poirt have
been. slower, hence later, offsetling the fuct they have not gone as far. Observation
verifies the condliustons of this heuristic argument,

The sharp quantization of. ball final position, as a fupceton of dnital conditions,
makts remarkably acenrate prediction possible,

Uskng algorithms, it wys possible by eye judgeménts alone to estimate the ball’s
fimal position three or Tour revelutions befora exit (perhaps five fo seven seconds
befare exit, which was ample time in which o bet) well enpugh o have a + 15%
expoctation o cach of the five most Favored numbers. A cigareite pack sived tran-
sistorized computer which we designad and built was able to predict up to ¢ight rivo-
lufions in advance. The pxpectation in tests was — 4%

Ouu; third of the Mevada rouletts wheels which we observed had the desived it of
at deast 0.2° The ingut to the computer consisted of four push-button hits: two when

T LT S,
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the 0 of the rotor crossed a fiducial mark during successive revolutions and two when
the ball crossed a fiducial mark on successive revolutions, The decay constants of ball
and rotor, approximately constant over the class of wheels observed, had been deter-
mined earlier by simple observations.

The ultimate weakness of the system was that the house could foil it by forbidding
bets after the ball had been launched.

Probabilistic summary

Roulelte on a slightly tilted wheel is repeated independent trials. At each trial the
plaver may wager on one or more subsets of the finitely many elementary outcomes.
A wager on a subset wins il and only if it contains the elementary outcome Lhat eccurs.
There are subsets with expectations of 44 %, Our procedure in practice was to bet on
one of eight neighborhoods of five numbers. Thus the payoffl for a bet of .2 units on
each of five numbers was either —1 or - 6.2. The expectation of + 449, corresponds
to a probability of success of .2. We remark that our knowledge of p increases with
the sample size.

4. THE WHEEL OF FORTUNE

The wheel of fortune, featured in many Nevada casinos, is a six foot vertical wheel
with horizontal equally spaced pegs in its rim. As the wheel spins, a rubber flapper
strikes successive pegs, slowing the wheel. There are generally 48 to 34 spaces between
the pegs, numbered with 1s, 25, 5s. 10s, 205, and two distinct 40s. A player betting a
unit on one of these outcomes is paid that number of units if his outcome occurs. The
wheel behaves to good approximation as though a constant increment of energy is
lost each time a peg passes the flapper. Thus 0, the total angle of rotation, is propor-
tional to the energy £, which equals fw?, where I is the moment of inertia and « is
the angular velocity of the wheel.

In practice, a transistor timing device of maich box size (a “spinoff” from the
rouletie technology) produced a faint click a chosen time after a push-button was hit.
The button was hit when a specified 40 passed the flapper. The timer was set so the
click was approximately when the second 40 reached the flapper. If it clicked afier the
second 40 reached the flapper, the wheel was “fast™ and would go farther than
average before stopping. If it clicked before the second 40 reached the flapper, the
wheel was “slow™.

For a given timer sctling, a table was constructed empirically, giving the approxi-
mate final position of the wheel as a Tunetion of the number of spaces the second 40
was [ast or slow when the click was heard.

In practice one could determine with certainty which of the two 40s could not occur.
Thus, one could always bet on the “right™ 40. On a wheel observed in the Riviera
Hotel there were 50 numbers, including 22 ones, 14 twos, 7 fives, 3 tens, 2 twenties
and 2 forties. Betting on the “right™ 40 would win on average 80 units in 50 trials and
lose 48, for an expectation of 32/50 or 649,

Probabilistic summary

Ignoring obvious refinements, we have repealed independent trials with probability
P = 1/25 of success at each trial, a payoff for a 1 unit bet of — 1 or - 40, and an
expectation of — 647,
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5. THE 5TOCK MARKET

The stock market 15 a natural economic ohject for mathematical analyvsis hecause
vast quantities of precise historical data are available in numerical form. There have
been many attempts to mathematically predict future price behavior, using as a basis
various subsets of the available information. Most notable are the attempts to predict
future prices lrom past price behavior. These attempts have caused the view to be
widespread in academic circles that, to first order, common stock prices are a random
walk and changes in common stock prices are log normally distributed with a certain
mean and standard deviation [51

Practitioners hotly contest this view. Part of the dispute is caused by practitioners
who are unwilling or unable o test their claims scientifically and part of it is due to
the success of a few practitioners who use much more information than past price
history alone. A recent study suggests strongly that “relative strength™ in a price series
is continued and, consequently, that past prices do have some value in predicting
future prices [16].

Whether or not we can predict the future course ol stock prices?, there are invest-
ments in combinations of securities which can vield high expected return [23]. These
investments involve converlible securities. A convertible security is one which, in
some cases with the addition of money, is exchangeable {per share) for a certain num-
ber of shares of anather security, Convertible securitics include convertible bonds,
convertible preferreds, stock options, stock rights, and warrants. There are several
billion dellars worth of convertibles listed on the New York and American Stock
Exchanges.

The analysis of ather convertibles follows from the analysis of the commaon stock
purchase warrant. We therefore restrict ourselves to these in our discussion, and shall
refer to them simply as warrants.

A warrant is the right or option to buy a certain number of shares of common for
a certain price, until a certain expiration date (warrants which de not expire are
called perpetual). The terms ordinarily read: 4 warrants plus £ dollars buy € shares
until D date. To avoid normalization problems, we suppose 4 = C = 1. Then Eis
the “exercise price” of the warrant, The prices ol warrant and common are related
and it is this which allows successful investments, One observes: (1) The price W of
the warrant should increase as the price $ of the stock increases. (2) If W 4+ £ =2 5,
warrants can be boushl and common sold short, simultaneously. The warrants are
then converted to common which is delivered against the short position, Neglecting
commissions, a profit of § — W — F per warrant results. The purchase of warrants
tends to increase W and the sale of commaon tends to decrease 5, until W 4+ £ = &5,
Thus B = 5 - E normally holds. {3) The common has advantages over the warrant
such as possible dividends, or voting rights, hence we also normally expect W <2 5.

Thus for practical purposes points {5, B representing (nearly) simullancous prices
of a common stock and its warrant are confined to the part of the positive quadrant
between the lines W = Sand W = 5~ E,

The prices B and § at a future time are random variables but they are related.
As F(8) increases we would expect, and past history verifies ([12, 23]), that £( W)
tends to increase, In fact the points (&, B9 tend to lic on certain curves which depend

L The great mathematician Karl Friedrich Gaunss was successful in the market but we have little
knowledge of his methods, On a basic salary of 1000 thalers per year he left an estate in cash plus
securities of 170,857 thalers {[7], page 237
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on several variables, most notably the time remaining until expiration of the warrant.
Thus, although we may not know the price 5 of the commaon, or the price B of the
warrant at a given future time, we do know that ( W, 8 is near ong of these curves,
The lamily of curves qualitatively resemnbles the Family W = (8% -+ E*)'7" - £, where
7= 1.3 4+ 5.3/7 and T is the number of months remaining until expiration.

A historical study of capiring warrants {Trom here onwe limit ourselves for con-
venience to warrants traded on the American Stock Exchange) suggests that during
the last two years or so before expiration they tend to trade al prices which are much
toa high. For instance the average loss from buying each of a certain 1 listed war-
rants 1% months before expiration and holding until 2 months before expiration was
46.0%, an annual rate of 34.5% ([23]. page 37). Thus selling warrants short seems to
yield high expectation, However, it also happens to result in occasional large losses
which, by the criterion of Part 1. are extremely undesirable despite the high overall
expectation. We can sharply reduce this high variance and yet retain a high expecta-
tion by vsing the so-called warrant hedge. The technique is Lo simultaneously sell
short overpriced warrants and buy commeon in a fixed ratio (generally from cne to
three warrants will be shorled for cach share of common bought), The position is
held until just before expiration of the warrant (al which time the warrant sells at a
“eorrect”™ price) and then it is liguidated.

Here is the rationale. We are mixing two investments with positive annual expecta-
tions of suy 34.5% lor the warrants and 109 for the commaon, resulting in an invest-
ment whose overall expectation must therelore be somewhere between these figures.
(We suggest 109 for the commaon because this approximates the observed mean rate
af return from commaon stocks during this century due to price appreciation plus
dividends.) Buying the common leads to a gain when the common rises and a loss
when it falls whereas shorting warrants leads o a gain when the common falls and
leads to a loss only if the common rises substantially. Thus the risks tend to cancel
out. In fact, the hedge generally vields a profit upon expiration of the warrant, for a
wide range of prices of the common.

If we make assumptions about the probability distribution of the price of the com-
mon al expiration of the warrant, we get more precise information about the random
variahle representing the payoll from the hedge, Let the probability measure P owith
support [0, o) describe the distribution of the stock price 5, at expiration. Then

E(S))=[ ¥"dP(x).
i}

Let 5, be the present price and let £ be the exercise price, Assume that P(5, = 5,
+ )= P(S; = 8, —r)foreach 1 == 0, ie. for any t, the chance of a price rise of at
least ¢ is no less than the chance of a price drop of at least #. This is a very weak
assumption. MNote that it dees imply E{5,1 = 5,

Just before expiration W, = 0il S, = Eand W, = 5, - Eif 5; = E Thus the

final gain from shorting a warrant at W, is W, if §; = Eand is W, - §; + Eif
S¢ = E. The gain from buying a share of common at 5 is, of course, S — S,.

Henee i we assume one share of common is purchased at 5F and one warrant is
shorted at .2F, the final gain G, is §; - 3Eif §; == Eand JEif §; = E. A standard
measure-theoretic argument yields E(G ) = .2E. Using 100%] margin, the percent
profit is E(G )/ .7E = 28%. With 100% margin on the warrants and 70%; margin
on the common, it is at least 2E { 55E = 36%. With 70%, margin on each, it is at
least .2 / .49 = 40°%, an annual rate of more than 209 if the warrant expires in
Lwr vears.
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It is interesting to caleulate £1G ) by assuming that 5 is log normally distributed.
Letling s, = 8,/ E, we thus assume that &, has the density function

flixy=(xo xﬂ} exp |:— (Inx—p)* /26 |, where p and o are parameters de—
pending on the stock. We note E(s,) = exp(p + o/ 2).

If ¢ is the time in months remaining until expiration (which is when s, Is realized),
then we assume v — log 5, + mf and 5° = a®t, where 5, = 5, £ 1s the present stock
price and a1 and o are conslants depending on the stock. Thus E{s.) — s, exp
[{m + a*f2)7]. A mean increase of 10% per year is approximated by setting 12(m +
a*{2y — .1, If we estimate &* from past price changes we can solve for m.

Letling w, = W /E, where W, is the final warrant price, a caleulation yields
E(w;) = E(s;) N{pfs + a)— N{u/fs), where & is the normal distribution. (Compare
the equivalent expression from pp. 464-466 of [3].) Now suppose that s, = .5, that a
has the realistic value of .15, or .05, and that 12(m + &*2) = .1, whence m =
085/12. Then for § = 24 we have o = J.06 = 245 and p = log .5 + .17 = -.523,
This yields £(w ) = 0015 and £(s;) = .61, whence £((G ) = .20 4 .11 = .31, Thus
the profit, with 70% margin on hoth warrant and common, is 31/.4% or 63.3% and
the annual rate is 31.6%. Note that the warrant is virtually worthless!

Instead of selling ene warrant short and buying one share of common, we can sell
short w warrants and buy s shares of common. Neglecting commissions, which we da
throughoul for simplicity, the gain & at any point (S, Wiz s(8 - §;) —w( B — B0
Thus the line & = (0, the zero profit ling, is the line through ( W, 5;) with positive
slape sfw — 1/m. We call m the mixv. Points below the zero profit line represent gain
and points above it represent loss. 161 < m <7 oo, the rero profit line intersects the 8§
axis at Sy — m W, and it intersects the line W= S-FEat 5 = [m{W#, + £) - 5]/
fm -1 W =(m W, + E-5;)/(m-1).

When the warrant expires the hedge position will yield a profit if 5, is between
the 5 values of the two intersections and it will yield a loss il 5, is beyond the inter-
sections. For instance, if §; = 3E and W, = .2F, the choice m = 2 insures a final
profit if 1E =2 5, =0 1.9E, Such safety is characteristic of the warrant hedge.

The final gain Gy is (S, - 5p) + whif 5, = Eand itis s(5, - 5,) + w( ¥
£~ 8:)if §; = E Thus as a function of 5, it is an inverted “¥” with apex above
Sy = E. With 100% margin, the initial investment is 5 5y | w Wy so the gain per
unit invested Is g, = G /(s 5, | w Wy ) With margin of 2 on the common and B on
the warrants it is g, = G, /(n 5 5y 4+ B w W)

We have assumed so lar thal a hedge position s held unchanged until expiration,
then closed out. This static or “desert island”™ strategy is not optimal. In practice
intermediate decisions in the spirit of dynamic programming lead to considerably
superior dynamic strategies. The methods, technical details, and probabilistic sum-
mary are more complex so we defer the details for possible subsequent publication.

Probabilistic sunmmary

The warranl hedge may offer high expectation with low risk. The gain per unit

grisg, =[(S;+ So) +m Wyl (= Sy + Bm W)lwhen S, = Fand g, = [(5,- 5;)

miWy +— E-5.)](x& + Bm W,)if §; = E The gain per unit depends only
on the random variable .. This has an unknown distribution bul it can be estimated.
The other quantities are constants depending on circumstances.
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PART 1I. A MATHEMATICAL THEORY FOR COMMITTING
RESOURCES IN FAVORABLE GAMES

L INTRODUCTION: COIN TOSSING

Suppose we ars confronted with an infinitely rich adversary who will match all bets
we make on repeated independent trials of a hissed coin (whose two outcames are
“heads™ and “tails”.) Assume that we have finite capital X, that we bet B; on the
outcome of the ith trial, where X is our capital after the jith trial, and that the proba-
bility of heads is p, where 1 = p = 1. (This is approximately the situation in Nevada
blackjack, except that the game is played with a “mix” of biased coins.) Our problem
i to decide how much to bet at each trial, A classic criterion is to choose B, so that
our expected gain E(X; — X;_,} is maximized at each trial, which is equivalent to
maximizing £ X)) lor all »,

Define T; by T; = 1 if the jih trial results in success and T, = —1 if the jth trial

M
FTB, j=12,...,and X, = X, + T T,B,;
=1

Weassume that 7, X, and 8; are all random variables on a suitable S’u*lpE: space £2,
If, for example, B iz a i‘unclmn o o X i Xy asitisin tha comnmn mumhbling
systems, .4, ‘-»hmmr_:a!L Labouchere, etc. (rmu_ Lhdt B, = | &, - X, | s0 we need
not add the B, &k = 1,...,7— 1}, then we see by induction that A; 15 a function of
Xy, Ty, 75, - . . Hence the underlying sample space can be tuken to be the space of all
sequences of successes and fuilures, with the usual product measure.

Suppose, more generally, that the plaver determined £; by examining X, ...,
Aj—1- and then “consulting” a chance device, e.g., a near-by roulette wheel. Then the
sample space consisting of an infinite pr oduct of spaces, cach of them a joinl outcome
of the roulette wheel and the latest trial, might be suitable, Such possibilities are in-
cluded if we simply assume T, X and B; are all random variables on some suitable
sample space L2

When 8; = X;_,, the player is betting more than he has. He is asking for credit.
This is common in gambling casinos, in the stock market (buying on margin), in real
estate (mortgages) and is not unrealistic.

When 8; == {, the player is making a “negative”™ bet. To interpret this, we note
that in our sequence of Bernoulli trials, or coin loss between fwe players, that what
one wins, X, — X, the other loses. To make a negative bet may be interpreted as
“backing” th& other side of the game, to 1aking the role of the “other™ player.

In pamcular the payoff B,T from trial j may be written as (—B,) (—T,). If &, = 0,
then —&; = 0 and may be interpreted as a nonnegative het by a p]u;-fl.,r whu succeeds
when —T; = 1, ie., with probability g. and who fails with probability p. The T, are
independcm s0 we have Bernoulli trials with success probabilitics g, i.e., the other
side of the game.

For simplicity we shall assume in what follows that 0 = = B = X o). but we may
wish at a future time Lo remaove one or both of these lumtanum

We also assume that B is independent of T, ie., the amount bet on the jth out-
come is independent of that outcome,

Definition: A betting strategy is a family { B; } such that D '_"-'-_ B=X_j=1

Theorem | : The belting strategies B; = X, _, when p = B- ={,p= { B cllbl‘
trary when p = 4; are precisely the ones w]uch maximize F ( Yj} far each I

Proof: Since X, = X, + £ BT, E(X,)) =X, + E E(B;T;) =
1

i=i =

results i failure. Then X; = X;_,
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=X, + E (p-g i1 E(B;)lfp-g =0,ic,p= 4 then E(B;)doesnotaffect E( X, ).
i=

fp-gq = (} ieop = Lothen E{8;) should be maximized, ie., B; = X, to maximize
E(X,). Similarly, if p— g < 0, ic., p < 4, then E(8;) should i:u: !nllliﬂli/_’ﬁd Lo M-
mize the jth term, ie., & = . Cluariy, these maxima are not altamsd with other
choices for B, This establishes the theorem.

Remark. In the forzgoing discussion, the Bernoulli trizls and the T can be general-
ized, yielding a4 more general theorem. (The 7 beeome “payoll functions™ that are
not necessarily identically distributed; roulette is the classic example.) The particular
case of blackjack is covered, for instance, by replacing p and ¢ throughout by p,
and g; for the respective probabilities that 7; = 1 or —1.

To maximize our expected gain we must bet our total resources at each trial. Thus
if we lose once we are ruined, and the probability of thisis [ - p" — | so maximizing
expecled gain is undesirable,

2, MINIMIZING THE PROBABILITY OF RUIN

Suppose instead that we play to minimize the probability of eventual ruin, where
ruin oceurs alter the jth outcome if X, = 0. 17 we impose no further restriction on &,
then many stratesies minimize the probubility of ruin. For example, it suffices o
choose B - X i /2. The discreteness of money makes it realistic to assume By =
B B0 R whcrc 15 a non-zero constant. We further restrict ourselves to the subclass
of Stlf‘ltE'Ti»S where B; equals C whenever 0 <2 X; | <Za, 8; =0if X, | = Oor
Aoy =2aand dlwlde_s both a - z and =z, where we have set z = X, Th;'-: I::L-, us use
the gamb!er s ruin formulae ([8], page 314).

Consider the gambler’s ruin situation: Xy = 2, 8, = 1l 0 =2 X;_, - a. #;, =0
ifX;_, =00r X;_, = a aand z are integers. Let » be a positive number {necessarily
rational) such that zr and gr are integers, Let R(#) be the ruin probability when z and o
are replaced by zr and ar, respectively. This is equivalent to betting r ™' units when
0 = X;-, < a, in the original problem.

We have R{r) = (8" - 8} /(B — 1), where 0 == p + fand 0 = g/p.

Theorem 2; {(a) If | == p = 1, R(r) is a sirictly decreasing function of . (b) If
0= p o= 4, R(r)is a strictly increasing function of »,

Proof: Follows from Lemma 3 below,

Part (a) of the Theorem says that in a favorable game, the chance of ruin is decreased

by decreasing stakes, Note that for p > 4, e, 8 =< 1, lim R(r} = @, hence by
making stukes sufficiently small, the chance of ruin can be made arbitrarily small.,

Lemmad Letg= 2z 0, x =0 If Q0 =2 6 =2 |, then f{x) = (7 - 8%/ (1 -0™)
is strictly decreasing as x increases, x = 0. If0 = 1, £{x) is strictly increasing as x
increases, x = 0.

Proof: Elementary calculations which we omil.

Theorem 2{a) shows that, at least in the limited subclass of strategies to which it
applies, we minimize ruin by making a minimum bet on each trial.

In fact, this holds for a broader class of stralegies:

Theorem 3°: If | = p = 1, the strategy B; = 1 il 1 = z = a-1, B; = 0 otherwise
{timid plan), uniguely mimmlzes the prabability of ruin 'mmng the strategim where 8,
is an integer satisfying 1 = B; = min (z, a2)if | = z = a1, B, =0 otherwme

Proof: We first show that :Ftlmld play is optimal, then it is unlqub]y‘ so. Let g be
the probability of ruin, starting from z, under timid play. To establish uniqueness it
sufllices to show
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o <Pgesrx T G9:mpn 2=k =2, 2k =20,z 4+ k= a (1)
Using g, = (0°-07) / (0°-1) and simplifying (1), we find that it is equivalent to show
Jpy=p"*""+ g -p g 20,12 <p= L. (2)

This follows at once from the observations F (%) = 0, (1) = 1, and M{p) = 0,
P<p= L.

To show that timid play is optimal, let Q(z) = l-g., and adopt the terminology
of [6]. Then @(z) is the probability of success, both for £ in our original game, and
for z/m in a normalized game where the possible fortunes are F = {0, e, 2/a, ...,
zfa. ..., 1 = afa }, and the betting units and limits are 1/g as large as before.

The establishment of (1) shows O(z) is excessive. But obviously w(z) = Q(z)
= U(z) so by [6, Theorem 2.123], Q(z) = Uiz).

Thus timid play is the one and only strategy in our class ol strategies which mini-
mizes the probability of ruin.

Remark: In [6] it is shown that bold play is oplimal but not necessarily unigue
when p = L (pages 2, 871F, 101£F). If there is also a legal upper limit to bets, there may
be more than one optimal strategy; whether bold play is one of them seems to be
unknown (page 4). Betting systems which minimize the probability of ruin in cerlain
favorable games are also discussed 1in [10].

The strategy which minimizes ruin has the unsatisfuctory consequence that it also
minimizes our expected gain, Some strategy is called for which is intermediate be-
tween minimizing ruin (and expectation) and maximizing expectation {assuring ruin),
A remarkable solution, in a certain sense very close to best possible, was proposed
in [13].

3. THE KELLY CRITERION

Consider Bernoulli trials with 1 = p = tand B, = fX,_, where 0 = f = l 15 a
constant. (This is sometimes called “fixed fraction™ or “proportional™ betting,) Let
5. and F, be the number of successes and failures, respectively, in # trials. Then

LS G G R

Observe that /7 = 0 and /= | are uninteresting; we assume 0 =2 f =2 1. Note o
that if' f == 1, there is no chance that X, = 0, ever. Hence ruin, in the sense of the
gambler’s ruin problem, cannot occur. We reinterpret “ruin” to mean that for each
g = 0 lim P[ X, = &] = 0, and we shall see that this can occur. Note leo that we

1

El
are now assuming that capital is infinitely divisible, However, this assumption is nol
a serious problem in practical applications of the theory.

Remark: The min-max criterion of game theory is an inappropriate criterion in
Bernoulli trials. [T B; is a positive integer for all j, the maximum loss, e, rain, 1s always
possible and all strategies have the same maximum possible loss, hence all are equiva-
lent. If capital is infinitely divisible, ruin is as we redefined it, and we restrict ourselves
to fixed fractions, then for an infinite series of trials the min-max criterion (suitably
probabilitistically modified) considers all £ with 1 2= = f, equivalent and all f with
0 = f = f. equivalent. It chooses the latter class. For a fixed number n of trials,
smaller fare preferred over larger f. The criteria of minimizing ruin or of maximizing
expeclation likewise fail to make desirable distinctions between the fixed fraction
stratesies,
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The quantity log [ X,/ X" = (S, / n) log (1 + ) + (F,/ n) log (1 - £) mea-
sures the rate of increase per trial. Since time is important it is plausible to in some
sense maximize this. Kelly’s choice [13] was to maximize £ log [ X,/ X,]"" = p log
(1 +7)+ glog (1-/) = G (), which we call the exponential rate of growth. The
following theorems show the advantages of maximizing G ( S

Theorem 4. If 1 = p = 4, G (f) has a unique maximum al f* — p —g, 0= fF o ],
where G(f*) = plog p + glog ¢ + log 2 = 0. There is a unique fraction S0
such that & (fz) = 0, and f, satisfies f* = [, = 1. Further, we have G =0,
0 = f<fGf) =20, = £, with G () strictly increasing, from 0 to G (%), on
[0, /%], and G (£} strictly decreasing, from G (f*) 1o — o0 on [f*, 1]

Theorem 3(a). If G(f) = 0, then lim X, = oo as., ie, for each M, P [ lim

n

X . =M]=1.

{b) If G(f) < 0, then lim X, = Oa.s.,ie, foreache > 0, P[lim X, < e] = 1.
(¢) fG{f) =0, then lim X, = oo a.s. and lim X, = Oas

Thus for 0 =2 (= £, the player's fortune will eventually permanently exceed any
fixed bounds with prabability one. For f = . it will almost surcly oscillate wildly

between 0 and + oo, If = £ ruin is almost sure,
Lin

Proof: (a) By the Borel strong law ([ 17], page 19, lim log [ X,/ X,] = G(f) = 0

with probability 1. Hence, a.s., for e = £}, where Q is the space of all sequences of
Bernoulli trials, there exists N («w) such that for n = N (@),
log [X, [ X, 1" = G(f)/2=0.
But then X, = X, e "“Y2 for n = N (w)so X, 7 .
{b) The proof is similar to part (a).
(¢) We use the fact that, given any M, [im 5, = np + M + 1 and

np 4 M
n

M L+f M
iug{l—f} = G{f}"i-?]:ﬂgl-—_‘ju— F 0
” G e o s
whenee X, = X, T Since §, = np + M infinitely often, a.s., then
o 14 fi4 , o o
lim X, = X TSy a.s. Since the right side may be chosen arbitrarily large,

lim X, = oo as,
a1

lim 5, = np~ M—1.Thenif S, = np + M, log [ X,/ X,]'" =

hguﬂ}ﬁw

5
1-1

The prool that lim X, = 0 a.s. is similar.
M
Theorem 6: If G(f,) = G(f,), then lim X,(f,)/ X,(f;) = o= as.
Proof: log [ X, (/1) Xo1'™ —log [ X, ( ;)] X )t
s 3 147 F 1-f,

2 Ln _ Pn ! el s . by il

log (X, (500 X (0 = log (1 +f3) + - log (l—fz) Therefore, by the
Borel strong law of large numbers, lim log [ X, (f)/X,(f21]1 = G(f;)-G(fa) = 0

with probability 1. Now proceed as in the proof of Theorem 5(a).
In particular, we see that if one player uses /* and another, betting on the same favor-
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able situation, uses any other fixed Iraction strategy f, then Iim X (/*)/ X (/) = =

with probability 1. This is one of the important justifications of the criterion “bet to
maximize £ log X,.”

Bellman and Kalaba ([2], pages 200-201) show that /¥ not only maximizes Elog X,
within the class of all fixed fraction betting strategies but in the class of “all” betting
strategies.

This also is a consequence of the following theorem, part of which was sugsesied
by a conversation with J. Holladay. Consider a series ol independent trials in which
the mtum on one unit bel on the ft!t outcome i5 the random vanable @, Then

X. = Tl[X” ;—1)and E log X, = E EIug[X,fX; ). We have X; = X; | +

B0, and XifXies = V¥ (B X () QJ Thus each term is of the form Elog (1 -
Fi(2:) where the random variable Fy depends only on the lirst /-1 trials, @, depends
only on the ith trial, and hence F; and Q, are independent. We are free to choose the
F; to maximize E log (1 + F,0,), subject to the constraint 0 = F; = 1.

Theoram 7: If for each { there is an fi, 0 < f; < 1, such that E log (1 4 f;Q;)
is defined and positive, then for cach i there is a number f* such that E log (1 + F.Q,)
attains its unigue maximum for F; = [ as. To avoid trivialities we assume 0; = 0
as., exch i

Proofl: It follows that the domain of definition of F log (1 — fi0,) is an interval
[0, ;) or [0, a;], where a;, = min (1, b)) and 5, = sup { f, : fiQ; = 0a.s. } = 0. Since
the second derivative with respect to f; of E log (1 +/,0,) is —E( Q7 /(1 + :0)%),
which is defined and negative, any maximum of E log (1 -1 50, is unique. The fune-
tion is continuous on its domain so il il is defined al &, there is & maximum. If it is

nol defined at @, then lim E log (1 + fi(;) = — o0 so again there is a maximum.
Filsy
By the independence of F; and O;, we can consider Fi(s,) and O,(s,) as lunctions
on a producl measure space 5; X S,. Then

Elog(1+FQ) = | [log(1+Fi(s,)Qi(s2)) = EElog (1 + Fi(5,) Q)

N 5

< Elog (1 + f* Q.) with equality if and only if E log (1 + F;(s,) Q;) =
E log (1 + f* Q;) a.s., which is equivalent to f;* O, = F;(s,) 0, a.s., and by the in-
dependence this means either fF = F a5 or Q; = 0 as. hence f¥ = F, as, and the
theorem 15 established,

We see in particular from the preceding theorem that for Bernoulli trials with suc-
cess probability p; on the ith trial and 1 > p, == 1, E log X, is maximized by simply
choosing on each trial the fraction f;*= p, - g; which maximizes E log (1 + f;3,)

4. THE ADVANTAGES OF MAXIMIZING £ LOG Xa

The desirability of maximizing E log X, was cstablished in a flairly general sctting
by Breiman [3]. Consider repeated independent trials with finitely many outcomes
I=1{1...,57} for cach trial. Let P({) = p,, i = 1,....s and suppose thal
{4y ..., 4, }isa collection of (betting) subsets of [, that each i is in some A;, and
that payoff odds o, correspond to the A, We bet amounts B,, . . ., B, on the respective
A, and if outcome i occurs, we receive X Bjo, where the sum is over {j:izA; }.
We make the convention that 4; = Fand o, = 1, which allows us to hold part of our
fortune in reserve by simply betting it on 4,. We have, in effect, a generalized roulette
game.
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Roulette and the wheel of fortune, as described in Part I, are covered directly by
Breiman’s theory.

The theory easily extends to independent trials with finitely many outcomes which
are not identically distributed but which are a mix of finitely many distinet distribu-
tiens, each occurring on a given trial with specified probabilities. The theory so ex-
tended applies to Blackiack and Mevada Baccarat, as described in Part L.

Bretman calls & game (e, a series of such trials) lavorable if there is a gambling
strategy such that X, — oo a.s. Thus the infinite divisibility of capital is tacitly assumed.
However, this s net a serious limitation of the theory. [T the probability is “negligible”
that the playver’s capital will at some lime be “small,” then the theory based on the
assumption that capital is infinitely divisible applies to zood approximation when the
player's capital is discrete. This problem is considered for Nevada Baccarat in [24],
pages 319 and 321.

Breiman establishes the following about strategies which maximize F log X

1. Allowing arbitrary strategies, there is a fixed fraction strategy B, = (/.. ... f})
which maximizes E log X,.

2. 1f two players bel on the same game, one using a strategy A* which maximizes
Eiog X, and the other using an “essentially different™ sirategy A, then Hin

X (A X (A)— onas

3. The expected time to reach a fixed preassigned goal x is, asymptotically as x in-
creases, least with a strategy which maximizes E log X,

Thus strategies which maximize E log X, are (asymptotically) best by two reason-
able criteria.

5. A STOCK MARKET EXAMPLE

Though in practice there are only finitely many outcomes of a bet in the stock
market, it is technically convenient to approximate the finite distributions by discrete
countably infinite distributions or by continueus distributions. In fact it is generally
difficult not to do this. The additional hypotheses and difficulties which oceur are,
from the practical point of view, artificial consequences of the technique. Hence the
new theory must preserve the conclusions of the finite theory so again we apportion
aur resources 1o maximize £ log X

Az a first example, consider the following stock market investment. It was the first
to catch our interest, and was based on a tip from a company insider.

Suppose a certain stock now sells at 20 and that the anticipated price of the stock
in one year is uniformly distributed on the interval [15, 35]. We first compute /* and
G (%), assuming the stock is purchased and fully paid for now, and sold in one year.
The purchase and selling fees have been included in the price. Thus, the cutcome of
this gamble, per unil bet, is described by dF () = C, -, ,,(s) ds, where F is the asso-
ciated probability distribution and € (s} is 1 for 5 in A and 0 for 5 not in A,

The mean mroof Fis & = 0. Also

8 ]ugz @

; ;
Gfi= 1 log (1+5)ds, G'(f) = | B v
! Y

Therefore Theorsm & below applies and there (s a unique f x such that 0 = f* = 4 and
G'{f*) = 0. To ohtain /7%, it suffices to solve

- o ; _*_J"sds_i "__
B = Owhere h(f) =G (Nflogse = | Trm= § ds= ] 777 =

+
=[={1 j]10g¢{1+_.|"sj[ which reduces 1o I - {Uf}llogfj +i§
-4

-ds, and llm G' (=

h(f).
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MNaow b ) has the same sign and root as (/) on (0,4, Since #{3) = | - 1 log,
1320, G(f)=0for 0= f= 3. Therefore 3 <= f* < 4; calculation yields f* =
3607,

Thus il the maximum [raction of current capital which can be bet is 1, we should
ket all our capital. However, if margin buying is allowed, we should {consistent with
our ahility to cover later) be willing to bet as much as possible, up to a {raction f*
which is 3.6 times our current capital.

The mathematical expectation for buying outright is .23 ¥, if buying on margin
is excluded and 0,90 ¥, if unlimited buying on margin is permitted, and additional
coverings can be made later as required, and we bel f* = 3.60 of our current eapital,

Integration yields
G(f)=[ogz e} [FI{ (1 + 3 [In (1 +3f/4)-1]-(1 =) [In(1-f{4)-11}
from which we find & (1) = 0.28 and & (3.60) = .59,

Mext, we compute /¥ and & (), assuming that calls are purchased for 2 points
per share. Thus the oulcome of this gamble per unit bet is described by the probability

distribution F with mass 5020 at -1, and F(5) = 2/20 i -1 = 5 = 6.5,
.5

The mean m = 18125 = 0L Also G(f) = {5;20}[032 (1-f1+ (2]20) | log,
=i

e (5200 log, e 5|Oet" . .
(1+f5)dsand G'(f) = (3, i }j' Bes o 27203 j 111 ds, from which it is
clear that lim &' (/) = - oo, Therefore, again by lhmrﬂm 8 helow, there is & unigque

It
f* such that G'(f*) = Oand 0 = /* < 1.

It suffices to solve i { ) = 0 where i { /) = 200°{ /) log, ¢

o e f
tation of the call purchase process is 1.8125 7 F, or ahout 1,03 V.

Integration yields
G =($)loga (1-/)+ (Ing e/ 10) (1 + 6.5) [In (1 +63}-1]-(1-1)
[In{1-/-1]. We lind & (0.57) = 055

Thus we have the interesting result that the expectation from buying calls is higher
than from buying on unlimited margin but that the growth coefficient is higher from
buying on unlimited margin. Our eriterion selects the latter investment.

For buying on margin & { 37 ) = .55 s0 our criterion selects buying on margin il
the margin requirement is less than 47 and buying calls, it possible, if the margin
requirement exceeds 17

In the preceding example we needed the following theorem to establish the unique-
ness of f* Wedefinea = sup { ¢ F{— 20, 1) = 0 } and note that if | + fa = O and

Telog, e .
ugi igﬁl_ db (5.

. We find /* = 0.37. The mathematical expec-

the integral G () = [ log, (1 4 f2) dF () is defined, then G'{f) =

(See, e.g. [17], page 126}

Theorem 8: The function G’ (f) = _glligg_e

dfF (5} is monotone strictly de-

a'_.g

creasing on [0, — 1/a). If the mean m = J' 5dF {z) = 0, then the equation G'(f) =

—1/a

slo . : : : :
_F g; df (5} = 0 has exactly one solution {* in the interval (0, — 1/a) iff ;,l]m
G’ Iffj -ci D. In this event, & () is monotonely strictly increasing for fin [f*, - | /a).

s s e
m}1'5'f1_ﬁ'_ O#Fs=a)soG (f,) = G

Prool: 0 < f, =1, < -1/a,
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From this and the right-hand continuity of G'( ) at 0, &' is monotone strictly de-
creasing on [0, —1 [ @ ). By hypothesis G'(0) = m log, e = 0. Therefore, from the
continuity of G'(f) on [0, -1/ a), G'(f) attains all values r on the interval

lim G'(f) = t = G'(0) exactly once. Thus there is exuctly one solution /* in
FA-1fa

(0, <1 a)ill lim G'(f) < 0.

A=

The description of & (1) is now evident,

6. WARRANT HEDGING

We next apply the criterion of maximizing £ log X, to the warrant hedge deseribed
in Part 1. With the notation of Part 1, and an assumed mix of 1, the gain X from a one
unit bet is

X={(s;—59+wo)/(osg+Pwy)s;,=1,and
X={H"Q+ I—Su},'r(liﬂ-.fg '?"31’1"0}1-'5;:} 1.

We wish to maximize Lthe exponential rate of growth (/) given by G{/) —
Elog (1 + X

It can be shown that the situation is essentially the same as in Theorem 8 and that
this depends on the a.s. boundedness of X; we havein fact as sup X — (wy -+ 1-54)
{5y + Bwg) and as inl ¥ = — (s, —wy) /(=85 + 8w Thus /* can be com-
puted when the mix is 1, though the details are tedious.

When the mix is greater than [, more serious difficulties appear. The payoft function
X hasas inf X = — o0 and a.s sup X < oo, This means that, no matter what fraction
= 0 of our unit capital is bet, there is positive probability of losing al least the entire
unit. Thus any bet is rejected! Yet this is unrealistic. We now find cut what is wrong.

First, the assumption that arbitrarily large losses have positive probability of oceur-
rence is not realistic. {2) The broker will antomatically act to liguidate the position
hefore the equity is lost. (b) The strategies for investing in hedges automatically lead
to liquidating the position after the common is substantially above exercise price.

There is, then, a maximum imposed on X by practice but it is not easy in practice
to specify this maximum. Further, this maximum will, in general, be a random
variahle (a.s. bounded, however) which is a function of the individual’s investment
strategy. It is not easy to determine the consequent probability distribution ol s, yet
this is required to calculate Elog (1 4 fA ).

More generally, we might consider an individual’s lifetime sequence of bets of
various kinds. It is plausible to assume that X, = 0 only upon the death of the indivi-
dual, for although the individual may have no cash equity at a given instant, he does
have a cash “worth”, based on his future income, serendipity, etc., and this should be
included in X This is true even of a (Billie Sol Estes) better who loses mare than he
owns. The subtlety here, then, is that the accountant’s figure for net assets (plus or
minus) is not an accurate figure for X, as X, decreases below small positive amounts.

One can also object to X, at death being assigned the value {3, by arguing that the
chanee of death in a time interval always has a small positive probability, thus making
Elog ¥, — - oo always. Also, individuals when choosing between two alternatives
each involving a low probahility of death generally do not meticulously select the
safer alternative {e.z.. air travel versus train travel), Thus death should really be
treated as an event with a large but finite negative value,

Another common objection to E log X, as a measure of “utility” is that, like all
such measures which are not a.s. bounded, it allows the St. Petersburg paradox.
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The foregoing objections to E log X, only arise when we leave the case of finitely
many outcomes. We sny that these ure artificial technical difficulties which can all be
removed in the cases of practical importance. This may be tedious, as it is for the
warranl hedge. so we defer such matters for a subsequent paper.

7. PORTFOLIO SELECTION USING E LOG X

The Breiman results were obtained for repeated independent trials with finitely
many outcomes and finitely many ways to apportion our capital (amongst finitely
many betting sets), The results extend, as we have remarked, to independent trials
which are a mix of finitely many differcntly distributed trials (i.e., finitely many out-
comes and betting sets) provided that as » tends to infinity, the number of trials with
each distribution also tends to infinity.

There are sigaificant real world siluations, such as the selection and continuous
revision of a portfolio of securities, to which this extended theory dogs not generally
apply. A difficulty which we have already discussed is that it may be technically con-
venient to introduce continuously distributed and possibly unbounded payoffs, but
now generalized to the apportionment of capital among a finite number of alter-
natives, rather than just betting a fraction on one alternative, Another problem is that
the sequence of betting situations may change so that no two are ever the same,
Further difficulties arise when we consider the possible dependence ol trials. Still
ather problems appear when we consider that in the real world the spectrum of situa-
tions is changing continuously and that a potentially continuous portiolio revision is
part of an optimal approach. (Actually. because of the transactioas costs which occur
in practice, porifolio revision is likely io occur in discrete steps.)

The extent to which Breiman’s conclusions for the finite case can be generalized in
these directions will be considered subsequently, For now we simply remark that the
possible generalizations promise to be adequate for the real world problems of port-
lolio selection,

Assuming this to be the case, we shall see in the next section that economists and
others now have lor the first time an accurate guide for portfolio selection and revision.

8. THE KELLY CRITERION AND DEFICIENCIES IN
THE MARKOWITZ THEORY OF PORTFOLIO SELECTION

How to apportion funds among investments has endlessly puzzled economists and
decision-makers. The literature was noted for its lack of instruction in such matters,
When Markowitz' work on portfolio selection appeared, first in articles and later in
the monograph [18], it became the standard reference.

Markowitz considers situations in which there are r alternative and, in general
correlated, investmenis, with the gain par unit investad of X,. ..., X, respectively.
(It 15 s0 much more dignificd 1o call bets investments; we shall try to remember to do
this in this section.) One of the investments is. of course, cash. The gain is ziven by
A =0as.

To select a portfolio is to apportion our resources so that f; is placed in the ith
investment, Markowitz” basic idea is that a portfolio is better if it has higher expecta-
tion and at least as small a variance or if it has at least as great an expectation and has
a lower variance. If two pertfolios have the same expectation and variance, neither is
preferable. As the f; range over all possible admissible values, the set of portfolios is
generated. Typically the assemplions onthe fjarcE f. = l,and f; = 0fori=1....,r.
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If & portfolie has the property that no other porifolio in the set is preferable, then
it is called efficient. Markowilz says that the investor should always choose an efficient
portfclio. Which efficient portfolio to choose depends on factors outside the theory,
such as the investor’s “needs”,

The Markowite theory has the obvious deficiency that if E; and af, i = 1,2, are
the expectation and variance of partfolios 1 and 2, then if E, < E; and cf < a3, the
theory cannot choose between the portfolios. Yet there are obvious instances whers
“everyone” will choose the second portfolic over the first, such as when Fy(x) =
£ x ) for all x. Specifically, let X} be distributed uniformly on [1, 3], let X, be uni-
formly distributed on [10, 100] and let Xy = 0 a.s. represent the possibility of holding
some of our resources in cash. Suppose X, X,, and X, are independent. Then
EXfiX =2f) +55fandc® 2f, X, = Eflel = /3 + 6753 All cash, or f; = I,
is an efficient portfolio since this is the unique portfolio with zero expectation. The
portfolio f; = 1 also is ellicient since this is the unique portfolio with greatest expecta-
tien, There are, in fact, infinitely many efficient portfolios. (They lie on a curve in the
f1. f» plane connecting (0, 0) and (0, 1).) The theory doesn’t tell us which is best,
vet o = 1 is clearly preferable to any alternative,

In the case where there are the two alternatives X, = 0 a.s. (cash) and X; with
E; = 0and 7, = 0, all portfolios are efficient and Markowitz’ theory gives no infor-
mation on which to choose, The Kelly criterion tells us to choose f; o maximize
Elog (1 — f5X,) and we know further from the theory of the Kelly criterion why
this choice is good. As we have seen, repeated trials of such an investment with
greater than the fraction f, will lead to ruin a.s.

Remark: This incompleteness of Markowitz theory is understandable since he only
uses probability information about first and second mements. We note though that
the examples he gives, and the real world applications, generally assume that more
detailed structure is known, Hence, it is reasonable that the eriterion £ log X, which
does use higher moment information, can provide a sharper theory.

Mext consider those two-point probability distributions with masses m,; located
at x,, { = 1, 2, and with mean and variance 1. These are indistinguishable by Marko-
witz' criterion, A calculation shows, however, that for X defined by x, = -1, x;, —
3/2, m, = 15, m; = 4/5, the optimal fraction f¥ is f and G(fTYis—(1/5)log 3 + {4/5)
log 2. For X, defined by x, = -2, x, = 4/3, m, = /10, my = 910, we have fF = §
and G(f¥) = —(1/10) log 4 + (9/10) log (3/2), which is smaller than G{f}).
Hence it X7 | is the fortune alter a repeated independent trials of an investor who
invests ¥ in X, at each trial and X, , is the fortune after r trials of an investor who
invests in any manner whatsoever in X, at each trial, we have lim X7 /X, . = was.

As a final example, suppose we are to apporlion our resources between the fore-
going X, and X,, which we now suppose to be independent, and cash, represented
by X We impose the constraints ;= 0, i=1, 2. 3; -+ +fi= 1 and f; +
2 15 = [, The Iatter constraint prevents investments where our losses exceed our total
resources, (The analysis and conclusion are essentially the same without this con-
straint.) The admissible portfolios are represented by the closed triangular region of
the positive quadrant bounded by the axes and the line /; + 21, = 1.

We have EZ X, = 11 -+ fi and. because of the independence of X, and X,
o’ L. X; = f{ + [i The efficient portfolios are the points of the f,, f, plane on the
two closed line segments joining (4, §) to (0, 0) and to (1, O).

The function E log (1 + £X, + LX) = G(f,,f>) 15 given by 30 G (f,.f2) =
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36 log(1+3/,/2+4/:/3) + 4 log(1+3/,/2-2/;) + 9 log(1-f; +
+ 4f,/3) + log(1~f, ~2/;). This function is undefined on the line joining
{0, 1/3) and ( I, 0). It is defined and continuous elsewhere on the triangle of portfolios
and as ( f,. /) tends to the segment from this triangle, G ( f,./3) = - 20, It follows
(by the continuity) that G ( £y, f;) altains an absolute maximum in the region of the
triangle where it is defined. We also know that any such maximum is positive. It
follows that. if an efficient porifolio maximizes G ( f,. 7). then it must be a portiolio
from the interior of the segment joining (0, 0) and (1/3, 1/3). Hence the coordinates
must simultancously satisfy the equations 2G (f,, )/ 8, = 0and 3G (f,.3)/
& f7 = 0. (We note thal in repeated independent trials where the investor selects an
efficient portfolio from the segment joining (173, 1/33 to (1, 03, he will be ruined with
probability one.)

Setling f; = /3 = tinthe equations ¢ G [ 2 f; = Oand 8 G § @ f; = 0 and atlempt-
ing to solve simultaneously yields, upon climination between the two equations of the
last of the four fractions, the necessary condition -2796 + 3761 + 111:* = 0. Since
this is negative at r = 0 and 1 = 1, there are no roots in the interval 0 < < 13,
Henee no efficient portfolio maximizes & ( f. f2)

We conclude that if X | is the lortune after a trials of a player who bets to maxi-
mize G(f,.f) on each triai, and X, , is the fortune of a player who chooses any
efficient porifolio on cach tnal, then lim X7 ,/X, , = o as Furthermore, the
Kelly investor will reach a fixed goal x in less time, asymptotically as x — <o, than a
Markowilz investor.

The Kelly ¢riterion should replace the Markowitz criterion as the guide to port-

folio selection,
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RESUME

Mises oprimales dens fe cas de “jeax favorabley”

Au cours de la derniére décade on a constatéd que le joueur pouvail avaoir Uavantage dans cerlains
Jewx de hasard, On verra que le “blackjack™, Ia mise latérale au Baccara - tel quil est joud dans le
Mevada - la rovlette et la “roue de la fortune™, peuvent tous offtir au joveur une espérance de gain
positive. La Bourse a beaucoup de traits commauns avec ces jeux de hasard [51. Elle offre des situations
particuliéres aves des gains attendus allant av-deld d’un taux annuel de 259 [23].

Dés que la théorie particulibre d’un jeu a &8 utilisée pour identilier des situations favorables, se
prose le probléme de savoir comment répartir au micux nos ressources. Parallélement 4 la découverte
de situations favorables dans certains jeux, les grandes lignes d'une théorie mathématique pénérale
pour exploiter ces opportunités s'est développée [2. 3, 100 13,

On décrica drabord les jeux faverables mentionnds ci-dessus: ce sont coux que Nanteur connait
le mizux, On discutera cnsuite la théorie mathématique géndrale, telle qu'elle s%est développée jusqu'd
maintenant, ot son application & ces jeux. Une connaissance déaillée d'un jeu particulier n'est pas
nécessalre pour suivee Nexplication. Chagque discussion portant un jeu favorable dans la partic | est
suivie d'un résumnd donnant les probabilités correspondantes. Ces résumés sont suffisants pour la
discussion de la partie I de sorte quiun leetenr qui n'a aucun intérét dans un jeu particulier peut passer
directement aw résurmé.

Dies références sont donndes pour ceux gui désivent étudier certaing jeus en détail, Pour Uinstant,
“jen favorable™ veut dire, jeu dans lequel la stralégie est telle que P (lim Sy = =) = 0 ol S, est [e
capital du joueur aprés messais,
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