Nontransitive Dice with Equal Means*

Mark Finkelstein' and Edward O. Thorp?

I Department of Mathematics, University of California, Irvine
2 Edward O. Thorp & Associates

Abstract. We analyze a game in which two players choose in turn and roll an
n-sided die, each player having his choice of numbering of the faces, subject to
certain constraints. The player who rolls the larger number wins. We say die B
“dominates” die A if P[B > A] > P[A > B]. The nontransitivity of this dominance
relation for dice has been studied by several authors. We analyze the case of n-sided
dice for which the faces are equally likely to be uppermost when rolled, the values
of the numbers on the faces sum to n(n + 1)/2, and these values are chosen with
replacement from the integers 1 through n. Our analysis shows that in contests that
are scored numerically, the relation “4 dominates B” is nontransitive even though
all participants have the same expected score. We illustrate this with an example of
m money managers (m > 3) who all have the same mean performance but for each
i=0.1.....m — 1, manager i is expected to outperform manager i + 1 (mod m).

1 Introduction

Suppose you and an opponent each have a six-sided die, which is labeled using
positive integers between 1 and 6 (inclusive), subject to the constraint that
the sum is 21. Call such a die admissible. You each roll and, if the uppermost
faces are unequal, the player with the larger integer wins. Assume each face
is equally likely to be uppermost.

How shall you choose your die? Is there an “optimal strategy”™? Do you
want to choose your die first or second (assuming choosing the same die as
your opponent is not an option)? What is the value of the game? We show,
below. that the “standard” die guarantees a win on average 1/2 the time for
any player who chooses it, against all choices of a die by the other player.
For any die not the standard die, there is another die that is “better,” in the
ense that choosing it gives a probability of winning more than half the time
(after excluding ties.) This is expressed by Theorem 1, which is a corollary
of Theorem 2, proved below. Dice with n sides are also considered. Further
elaboration of these ideas follows after the theorems, presented below.

* 2000 MSC: primary 91A60; secondary 62C20, 91A05.
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Theorem 1. For any die A not the “standard” die, there is another die B
that “dominates” it, in the sense that P[B > A] > P[A > BJ.

Note that from this result we can construct sets of so-called nontransitive
dice. as follows: Write B = A if B dominates A. There are a finite number m
(m = 31, actually) of nonstandard dice. Starting with any nonstandard die
Ay, repeated application of the theorem yields Ay = A = - = Az = Ay
By the pigeonhole principle A, 41 = Ay, for some k, 1 < k< m. For no die A
is it the case that A = A: and for no dice A and B is it the case that A = B
and B = A. Tt follows then that the cycle Ayy1 = Am > -+ > A = A
contains at least three distinct dice, so the relation “>" violates transitivity.

2 Dice with n sides

We shall investigate the mathematical structure of the relationship “dom-
inates” more generally on the set of n-sided dice with faces chosen (with
repetition) from the first n positive integers, constrained to sum, like the
“standard” die, to n(n + 1)/2. For this general case we again call such dice
admissible. The “standard” n-sided die, Z,, has faces (1.2,...,n). We shall
drop the subscript n when its value is clear. Among other results, we shall
show that Theorem 1 holds for n > 4.

Nontransitive dice have been discussed previously (e.g., Blyth 1972, Gard-
ner 1983, Tenney and Foster 1976) where values of the faces could range freely
over the positive integers and there was no limit on their sum. They arise
naturally as an example of nontransitive voting preference leading to voting
“paradoxes” (e.g., Saari 1995, 2001, Savage 1994, Smith 2001). Our approach
is to explore nontransitivity when we constrain the dice to be “as much like
the standard die as possible,” namely, that their means equal the mean of
the standard die. and the faces are chosen from the same set of numbers as
the standard die. The increased constraints create more structure and more
specific results.

We start by looking at the trivial cases: n = 1,2,3. There is only one 1-
sided die. which can be modeled as a sphere with the label “1.” There is only
one 2-sided die. which can be modeled as a coin (with the rim rounded so it
cannot end up “on edge”). For n > 3 we can use a prism with cross section a
regular n-sided polygon and ends trimmed to convexly fit a hemisphere whose
equator circumscribes the prism and is perpendicular to its axis. This prevents
the prism from standing on end. The prism is tossed in a * random” way and
lands on a horizontal plane surface. Poundstone (1992) tells the story of how
RAND manufactured a stubby cylinder designed to fall with probability 1 /3
on each face and on the edge. When von Neumann was confronted with the
“coin,” he thought briefly and correctly announced its proportions. For von
Neumann’s solution see Mosteller (1965).

A
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For n = 3 we have two choices, the standard die Z3, with faces labeled
(1,2,3), and the “symmetric” die S with faces (2,2, 2). It is easily seen in this
case that P[Z > S| = P[S > Z], which leads us to a useful general fact.

Define Q(A, B) = n?{P[A > B]-P[B > A]}. Then A = Biff Q(A, B) > 0.

Lemma 1. For n > 1, if Z is the standard die and A is any dic, then
Q(Z,A)=0.
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completing the proof. 0O

The case n = 4 begins to show some structure. The five distinct dice are,
listing faces, S; = (4,4,1,1), Z = (4,3,2,1), A1 = (4,2,2,2), A, = (3,3,3,1),
and Sy = (3, 3,2,2). We have listed them in this order to suggest a systematic
procedure for their construction. The dice S; and S5, as well as Z ’ x,miv_? the
following: .

s(n+ 1 — 1), where s(i) is the number of faces of value i. If a die is not
symmetric we call it asymmetric.

Definition 1. A die S is symmetric if, for eachi = 1,2,....n, we have 5(i) =

Since Q(X.Y) = —Q(Y. X) the matrix is always antisymmetric. Table 1
displays the @ matrix for the four nonstandard dice in the case n = 4. From
the matrix, we observe A; = S; = Ay = Sy > A, a nontransitive chain
of maximum length. Notice also that Q(X,Y) = 0 when X and Y are both
symmetric, reminiscent of the fact that Q(Z, A) = 0 for all A. This turns
out to be generally true, putting a significant restriction on the dominance
relationship.

Table 1. The @ matrix for the four nonstandard dice in the case n = 4.

\pw \»m
(4225 A4 © -2 2 -2
(3,3,3,1) 4, 2 0 -2 2
(4,41,1) & -2 2 0 0
(3,3,2,2) S 2 -2 0 0

Lemma 2. Forn > 1, if S and T are symmetric dice, then Q(S,T) = 0.
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Proof. The case n = 1 is trivial. For n > 2, let " be the n X n matrix
whose (i, j)th entry is s(i)t(j), where s(i) is the number of faces of S with
value 4, and ¢(j) is defined similarly. Then Q(S.T) is equal to the sum of the
entries of ' below the diagonal minus the sum of the entries of Q' above
the diagonal. But the (i, j)th entry of Q' below the diagonal is equal to the
(n+1—i,n+1—j)th entry of Q" above the diagonal, hence the two sums
are equal and Q(5,T) =0. 0O

One might wonder whether Q(4,B) = 0 and Q(B.C) = 0 implies
Q(A.C) = 0, as it does in the case n = 4. The case n = 5 shows this is
emphatically not true. In this case, there are 12 distinct admissible dice, six
symmetric and six asymmetric. These can be ordered so that Q(A;, Aiy1) =0,
i = 1.2....,11. Hence any X,Y are joined by a chain such that Q = 0 for
adjacent elements of the chain. Nonetheless, there are many pairs (A4, B) such
that Q(A. B) # 0, as we shall show when we prove the main theorem. How
many distinct admissible dice are there for each n? The next lemma answers

this for symmetric admissible dice.
Lemma 3. For n > 1 there are

n—1

5=\ -1)/2)

symmetric admissible dice.”

Proof. With the understanding that 0! = 1 the case n = 1 is trivial.

(a) Let n = 2m > 2 be a positive even integer. There is a one-to-one
mapping from the set of dice whose faces are chosen from the first n integers
but are not necessarily admissible onto the distinct arrangements of n balls in
n ordered cells {1,2,...,n}. To obtain this mapping, let the n possible values
of a die correspond in order to the n cells and let the number of faces of value &
correspond to the number of balls placed in the kth cell. The number of ways
to place r balls in n cells is the binomial coeflicient A:+H_.|J. See e.g. Feller
(1968). It follows from the definition that the arrangement for symmetric dice
is determined once n/2 = m balls have been placed in the first m cells. Setting
n=r=min A:+N_.|J shows this can be done in Am:w:l_v ﬁmﬂmv ways.

(b) If n = 2m + 1 > 3 is odd, there must be an odd number k =
1.3.5.....2m + 1 of faces with the median value of m + 1. This leaves
p=0.1.2....,m faces to be assigned values from 1 to m, and symmetry then
determines the m remaining values that occur between m-+2 and 2m-+1. Thus,
there are a total of 1+ Y 7", A:Jr% ~1) symmetric dice, which can be written
> oo ASJTJ. It can easily be shown (e.g., Feller 1968, Chapter II, eq. (12.8))
that MU%HICH As,wwiv = AN:N:LV = Ss,, from which So,,41 = 252, = Awwv The
result follows by combining cases (a) and (b). O

3 The symbol || stands for the greatest integer less than or equal to  (the “floor” of z).
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Table 2. The number of admissible dice N,, and the number of symmetric admissible
dice S,,.

noom Ny,
2 1 1 1
3 1 2 2
4 2 3 )
5 2 6 12
6 3 10 32
7 3 20 94
8 4 35 289
9 4 70 910

10 5 126 2934

may describe X by listing its faces. typically in either monotonic nondecreas-
ing or monotonic nonincreasing order. The standard die in this description
would be Z, = (1.2....,n), where we use round parentheses in this repre-
sentation. It is also useful to describe a die, as we have done. by listing the
number of faces x(i) for each value i, in order of increasing value i. Then Z,
is the n-tuple {1,1,....1}, where we use curly brackets to distinguish this
representation from the previous one.

Intuitively. imagine the points ¢ = 1,
x(i) at each i. Then x(i) = nP[X = i] and by assumption Y g ®{i) =n and
Sonyia(i) = n(n 4 1)/2 for admissible dice. So the center of mass is at the
midpoint (n +1)/2.

.....n on the real line with masses

=

Definition 2. For any die X. the reflection X* of -
2*(i) =z(n+1—-1) fori=1,2,....n.

is the die such that

Thus X is symmetric iff X* = X. The reflection transformation can be
thought of as a physical reflection of the masses {x(1), 2(2),...,x(n)} through
the center of mass. The next lemma, a collection of facts that we shall use in
the proofs, follows easily.

Lemma 4. For any X,Y ., we have X** = X, Q(X.Y) -Q(Y.X), and
Q(X.Y) = —Q(X*,Y*). Equivalently X » Y & V" = X*; QX,Y)=0&
QY,X)=0& Q(X*.Y*) =0.

We return to the proof of Theorem 2, part (A), case of even n = 2m > 4:
Define special symmetric dice Sk, k = 1,2....,m, by sp(k) = sg(n+1—k) =
m, si(i) = 0 otherwise. Given any A (asymmetric), it suffices to prove there is
an S such that Sy = A, 72 wise this means there is an S such that .S; > A*,
and hence A = A* = 9" =

If P[Si > m: PlA > .mL for some k, we are done, so assume not.
Then for k =1,2,...,n/2 = m we have P[S, > A] < P[A > 5], i.e.,

i
!
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1 n—k k—1 1 n n
e (i) + a(i) p < — (7 i
2n MIU MU Ll MU oli) + MU a(i)
i=1 i=1 i=n+2—k i=k+1

which leads to a series of inequalities, corresponding to k = 1,2, ..., m:

:CVM:A:V
2a(1) +a(2) < a(n—1) + 2a(n)
2a(1) + 2a(2) + a(3) < a(n —2) + 2a(n — 1) + 2a(n)

2a(1)+ - +2a(m—-2)+a(m-1) <a(m+2)+2a(m+3)+ -+ 2a(n)
2a(1) + - +2a(m — 1) +a(m) < alm + 1) +2a(m+2)+ -+ 2a(n)

If all these inequalities are equalities, then a(i) = aln +1—4), i =

.H. 2.....m, and A is symmetric, contrary to assumption. Hence, at least one
is a strict inequality. Thus, summing yields the inequality

(n—=1)a(l)+(n—3)a(2)+---+a(m) <a(m+1)+3a(m+2)+---+(n—1)a(n).

Putting all the terms on the right side and adding n(n +1) = (n+1) 31, a(4)
vields -
n

(n+1)n< mM ia(i) = (n+ 1)n.
i=1
a contradiction that proves this part.
. Part (A), case of odd n = 2m + 1: The proof proceeds as in the even case
with the same set of inequalities, to which we adjoin the case k = m + 1:

a(l) +a(2) +

~-+a(m) <a(m+2)+a(m+3)+---+a(n),

E:or is obtained by defining S,,+1 as the symmetric die such that Sm1(m+
1) = n and s,,41(7) = 0 otherwise. The calculation of Q(Sm+1. A) then yields
the k = m+1 inequality above. Adding the inequalities for & = 1. 2.....m-+1

and assuming the result is a strict inequality leads to a contradiction as in the
even case, proving this part.

Definition 3. A partition of the die X of dimension n with the row vector

= T.ﬁ.v.iwv. ...x(n)} is a collection of row vectors also of length n with
nonnegative integer coordinates, .

={z;(1).2;(2),....2;(n)}, j=12.... .k

such that X = MU 1. Call such each X; a subdie. A subdie X; is admis-
sible if ! .

n l_l. ;— n
v n
M izi(e) = e M i),
i=1 Ti=1
i.e., if the “center of mass™ of the subdie is the same as for an admissible die
of the same dimension. A partition is admissible if each subdic is admissible.
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Every X has a partition X = X4 + Xg into X4 asymmetric and Xg
syminetric, where Xg is the maximum symmetric subdie. To construct Xg.
simply remove symmetric pairs of mas one pair at a time, from X until
no more remain. If n = 2m + 1 is odd, also remove the masses at m + 1. The
residual is X4, and X — X4 = Xg. The subdie X is “purely asymmetric,”
i.e.. it has the property that za(i)za(n+1—4)=0,i=1,2.....n. We shall
call X4 the asymmetric part of X and Xg the symmetric part.

Lemma 5. Suppose X = X + Xg. where Xy is purely asymmetric and Xg
is symmetric. Then X o is admissible iff X is admis sible. X is symmetric iff
Xa=0.If(X1. Xo,...,Xy) is a partition of X and (Yi.....Y},) is a partition

of Y. then Q(X.Y) = KOS Q(X..Y;). In particular,
i=1 gi==1l J

QX4+ Xs,Ya+Ys) = Q(Xa,Ya) + Q(Xa,Ys) + Q(Xs.Ya),
Y) =Q(Xa.Y).

ymmetric, then Q(Xa + X

and if Y i

Proof. The various statements in the lemma follow directly from the defini-
tions. The last fact allows us to simplify the proof of part (B) of Theorem 2
by using simple purely asymmetric subdice to dominate any symmetric S. O

Part (B), case of n = 2m > 4: Choose an arbitrary fixed symmetric S #
Zn I s(k—1) = s(k+1) for all k = 2,3,....n — 1, then s(1) = s(3) =
oo =s(n —1) =z, while 5(2) = s(4) =--- = s(2n) = y. But s(1) = s(2n)
from the symmetry of S, hence ¥ =y and this common value must be 1
since Y1, s(i) = n, hence S = Z,, a contradiction. Hence we must have
s(k — 1) # s(k + 1) for some k. Without loss of generality we may assume
k < m since S is symmetric. If & < m. define X4 by ra(k—1) =xa(k+1) =1,
za(n+1—k) =2, xa(i) = 0 otherwise. If k = m, define X 4 by x4(m—1) =1,
za(m+1) =3, x4(i) = 0 otherwise. Note that X 4 is admissible. A calculation
shows that Q(X4.S) = s(k + 1) — s(k — 1) # 0, hence either X4 > S or
;XM,_* - S,

Part (B), case of n = 2m + 1 > 5: For some k, s(k — 1) # s(k + 1). To
prove this, suppose instead that s(k —1) = s(k + 1) for every k such that
2 < k < n—1. Then since n is odd and § is symmetric, s(m+1) =z >0
where  is odd. Hence s(i) = x for all odd i. For any admissible die other
than 7, there must be at least one index i such that x(i) = 0 (otherwise
the sum of the masses would exceed n.) In fact it follows at once from the
fact that the die is admissible that there must be at least two such points. If
2(i) = 0, i must be even, hence x(i) = 0 for all even i. Then the total mass,
which is 2m -+ 1. must equal (m + 1)x, where x is an odd integer. But then
x = (2m + 1)/(m + 1) which is not an integer. We have a contradiction, and
therefore there is a k such that s(k — 1) # s(k +1).

From the symmetry of S, k # m-+1 and we can choose k < m-+1. As before,
define X 4 by xa(k—1) = xa(k+1) =1, za(n+1—Fk) = 2, w4(i) = 0 otherwise.
As before, a calculation shows that Q(Xa,S) = s(k+1) —s(k—1) # 0.

One way to do the calculation is via the following easily proven lemma.

§
{
i
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Hmamz.m 6. If D is any subdie, not necessarily admissible. with reflection I
and S is symmetric, then Q(D,S) = —Q(D*, 9).

Now anc:%c% the X4 of the proof of the theorem into X4 = D; + D
2_5.?, U_. is defined by di(k — 1) = dy(k + 1) = 1, d,(i) = 0 otherwise. an
Dy is defined by da(n+ 1 — k) = 2. da(i) = 0 otherwise. Then

Q(X4.S) = Q(D1,8)+Q(D2, ) = Q(D1, S)~Q(Da*, S) = s(k+1)—s(k—1

s&.cw.o the calculation for the last equality is direct. Note that this metho
unifies the & < m and k = m cases for the proof of part (B), case of n =
2m > 4. This completes the proof of Theorem 2. [J

, To see why the special Sy are sufficient for determining whether or not
given A, there is an S such that Q(S. A) # 0, we note the following lemma.

Lemma ﬂ . For alln > 4, with Sy as in Theorem 2, part (A), given any five
asymmetric die A we have maxy Q(Sk. A) = maxg Q(S. A).

.\uﬁo.c\. We give the proof for even n = 2m > 4. The proof for odd n is similar
a bit more involved. and is omitted. Suppose n = 2m > 4. Define symmetri
subdice Xy, for £k = 1.2.....m by ap(k) = xpn+1 - k) = 1, ;Tv =
czyﬁ. ,.. : .AI ore

fvm.PFa&EEZ:om.@bvms:ﬁﬁmcmvml MmWHaTﬁ.érﬁdlﬁ&

are nonnegative integers and 23"/, ¢, = n. Then

m m

QS A) = exQ(Xx. A) < exM = mM.
k

k=1 =y |

where M = max, Q(Xy, A). Choose k = p such that M = Q(X,, A)
; ¢ at M = Q(X,.A). Ther
Q(S.A) < MQ(X,, A) = Q(S,, 4). O o

3 A nontransitive-dice game

mﬁvwomo for a given n > 4 that we have a bucket containing all the admissible
dice except Z,,. Player I chooses a die X which is shown mc Player 1I. Playex
E. then chooses a die Y. Both dice are rolled, and if one EE,E..._J_ die shows a
w:mr@. number than the other player’s, the latter pays the .wc::mH one unit
The expected payoff to Player I is F = Q(Y, X) \,:w., Theorem 2 shows 2:;.
Player IT can always choose Y so that E > 0. If both players choose ocﬁEm:w,
we wm,.ed the value of the game to Player II as Vj; = E:._ y maxy Q(Y, X)/ :w.
Examination of the matrix @ shows that for n = 4 SM = 1/8, for n = a
’rr = 1/25, and for n =6 Vi = 1/36.

For those interested in playing the game, we find that for n = 6 there are
1o &E:m:mmﬁﬁ, chains Ay = Ay > -+ = A; 11 = Ay with QA Ajrq) > 6
for i = 1,2,...,4. There are precisely two with Q(A;, 4ix1) > 6. Ajrcu‘ are
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So = A= A* = Sy and Sy = A > Sy = A* = Sy, where Sy = (3,3,3,4,4,4),
Sy = (2,2,2,5,5,5), and A = (1,4,4,4,4,4). Note that maxxy QX,Y
Q(A, A*) = 14.

Before studying Vi; further, we investigate how badly Player I can play if
Player II plays optimally; i.e., we study maxx maxy Q(Y, X).

Lemma 8. (a) If n = 2m > 4 and Player I chooses A, defined by a,(m) =
n—1, a,(n) = 1, and a,(i) = 0 otherwise, then the value to Player II is at
least 1 — 4/n +2/n?. u

(b) If n = 2m~+1 > 5 and Player I chooses Sy, defined by sy 1 (m+ 1) =mn
and 0 otherwise, then the value to Player II is at least 1 —4/n.

Proof. The idea is to pack the masses of Player I's die as much as possible on
one point and also as close to the midpoint as possible, then construct a die
for Player II with as much mass as possible one step above.

Proof of (a): If m > 2, define Y = 4,". mcH A, acET that M —y a(i) = n,

S, ta(i) = n(n +1)/2. We have QA5 A,) =n? —dn+2.

Note that for n = 4 we get Q(4,*, A,) = 2, which is maxyxy Q(X.Y).
For n = 6 we get Q(A,,*. A,,) = 14, which also is maxxy Q(X.Y). For n =8,
QA" A,) =34 , |

Proof of (b): Define A by a(1) = a(2) = 1. a(m + 2) — 2, and 0

otherwise. Note that since m 4+ 1 > 3, the masses at 1 and w are “below” the
masses at m + 1. Then observe that >, a(i) =n, Y i ia(i) = :A:‘.T 1)/2,
and Q(A.S,) =n(n —4). For n =5, Q(4.5,) =5 =maxxy Q(X.Y). O

ote that changing A slightly to B, defined by b(1) = 2, b(m+2) =n—3,
b(m + 3) = 1, and 0 otherwise, works equally well.

Now we look at how well Player I can do. Define || as the integer part
of z. and fr(x) as the “fractional part” of z, i.e. fr(x) = v — |2].

Theorem 3. Define the die Xo by xo(1) = zo(n) =0, xo(2) = ;.S.A: l%v =2,
20(i) = 1 otherwise. Then for n > 6, n*Vr < maxy Q(Y, Xo _.mMm|13; and
is given by

a maximizing Y

(i) y3) =a= i yn—=1)=>b= i and 0 otherwise when a is an
integer, and

(i) y(3) = la, y(n — 1) = |b], y(n = 1 —k) =1, where 0 <k <n —4 (recall
Q:; n>6), and k = (n —4) fr(a) and y(i) = 0 otherwise, when a is not
an integer.

An upper bound for Vi is therefore Vip < Mw? < 5o

Proof. Since n?V;; = miny maxy Q(Y, X) < maxy Q(Y, Xp), the latter yields
an upper bound for the value of the game to Player II. The motivation for the
choice of Xy is that if Player I could choose Z,, then Vi; would equal 0, and
X, is “as close as possible” to Z,. We write Xo = Z,, — X| + Xy, where X

T ——
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and Xy are as in Lemma 7. Choosing X; and X, from the set of X}, appears
to give the “best” constraints on the y(i).

A calculation yields Q(Y, Xo) = y(n) + y(n — 1) — y(2) — y(1) and Player
IT wishes to maximize this. One would expect this to occur when y(n — 1)
is maximized subject to y(1) = y(2) = y(n) = 0. We shall prove this later.
Assuming this for now, imagine that y(3) = a, y(n — 1) = b, where a and
are positive real numbers, and y(i) = 0 otherwise. Then a and b must satisfy

a+b=n,
Ja+(n—1)b=n(n+1)/2,

the solution of which is a = Wﬁﬁ and b = 2 mHMW If @ and b are integers,
this establishes part (i). If @ and b are not vo,mr integers, then since n(n—3)/2
is an integer, a has the form a = |a] + ¢ where 0 < g < 1 and ¢ = k/(n — 4
for some integer k such that 0 < k < n — 4. Since 3fr(a) + (n — 1) fr(b) =
3k/(n—-4)+(n—-1)(1-k/(n—4)) =n—1—k, (ii) follows.

It remains to prove that the chosen ¥ maximizes Q(Y. Xy). We indicate
the method, which can be formalized. Start with any A chosen by Player II.
We show Q(Y, Xy) > Q(A, Xp).

Step 1: If a(n) # 0. shift one unit of mass from n to n — 1 and simulta-
neously shift one unit of mass one position to the right from the least k& such
that a(k) # 0. This keeps A admissible. Iterate this procedure (Step 1) until
a(n) = 0. Call this result 4;. Clearly, Q(A1, Xo) > Q(A. Xy).

Step 2: If a(1) # 0 or a(2) # 0, and some a(k) # 0 for 3 < k < n—1, then
shift one unit of mass from the greatest such k to k — 1 and simultaneously
shift one unit of mass from the lesser of 1 or 2 to one index higher. Iterate this
procedure (Step 2) until either (a): a(k) = 0 for all k such that 3 < k <n—1

(b): a(1) = a(2) = 0. Call the result As. Clearly Q(As, Xo) > Q(A;, Xp).

Step 3(i): For A2 we have as(k) = 0 when 3 < k < n — 1 and ay(n) = 0.
Hence as(1) or az(2) # 0, and further az(n — 1) # 0 as well because of the
condition Y-, ia(i) = n(n+1)/2. So long as aa(1) or ap(2) # 0, shift one of
the masses up one step and simultaneously shift down one step one mass from
the least & > 3 such that ay(k) # 0, except when the lower shift is from as(1)
and the upper shift is from as(n — 1). In this latter case, shift each two steps.
This last is to avoid increasing Q(A, Xp). Iterate until ay(1) = as(2) = 0.
The result is A3z, where a3(3) # 0, ag(n — 1) # 0, az(k) # 0 for at most one
k such that 3 < k < n — 1, and a3(i) = 0 otherwise. Clearly, As satisfies
Q(As3. Xo) > Q(A2, Xo) and also the conditions of the theorem.

Step 3(ii): Here Ay satisfies a(1) = a(2) = a(n) = 0. Now we want to push
up the masses between k = 3 and n — 2 with the Fﬁnnﬁ k towards k =n — 1
and those with the smallest & towards k = 3. If Mu:ﬂ a(i) <1, we are done.
If instead there are two or more masses in the range 3 < k < n — 1, move any
such mass with greatest k one step up, and balance by moving any such mass
with least k one step down. Iterate until either all masses are at & = 3 and
k =n —1 or all but one is, and it necessarily satisfies 3 < k < n — 1. Call the
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result As. Again, Q(As, Xo) > Q(A2, Xp), and Ay is the Y of the p_rocgzw
Thus the Y of the theorem maximizes Q(Y, Xy). This completes the proof o

Theorem 3. 0O

A computer program verifies that for n = 6 mﬁ.& n H.m, the Wm: w.:& M«
of the theorem are optimal strategies and, along ew;r. their ..L:..&. m“ﬂ;ﬂmm_ww,
pairs, are the only optimal strategies. The value Vi, for n = 8 is 3/64. WW
“dual” strategy pairs to Xg = Z,, — X1 + Xy and Y are defined to v.m..%o M l
Z, + X1 — X5 and Y*, respectively. For n = 7 the no::::.ﬁ. e‘owﬁ.mv ﬂ,‘E_a
Vir = 2/49 and that the Xy and Y of the ﬁrcﬂ.:.ew: are optimal fim#amumf
The remaining optimal strategy pairs consist of Xy .m_:,& the two o ioH:”f. .
perturbations of Y: Y] = (1333666) and Y, = (3333367), along é#b t *:W
reflected strategy pairs. The reflection of X = (x(1),2(2),... .l:vv .E mmuml
(n+1—xz(1),n+1-2(2),...,n+1—2(n)), and the reflected pair for (¥, Xo)

is (Y*, XoP).

i itivity i manager
4 Cycles, chains, and nontransitivity in money g
performance comparisons

We saw in the discussion of n = 4 which followed Lemma .H that the four &o.m
other than Z formed a closed loop with no repeats, which we &wm:m& mm_w
cycle. It follows at once from the ) matrix mow n = 4 that this is the only
n.wim of (maximum) length 4: 4y > Sy = Az = 52 Y \r.. (The mgcaﬁ.ww m:.m N
is omitted throughout this discussion unless explicitly introduced.) Ther md Hw
also exactly one cycle of length 3, namely A4; > S L - \.»m. = Ay. One way .ﬂo vmm
this is to define a new matrix R by R(i,j) =1 .m Q(i,7) >0 mwz_. mC.,b ;
otherwise. Of course, from the antisymmetry of Q) we rma‘m R(i, j)R( g.. &v.. .
for all i, j. In Table 3 we give the R matrix corresponding to the ) matrix in
Table 1.

Il

Table 3. The R matrix for the four nonstandard dice in the case n = 4.

P
(4,2,22) 4 0 0 1
(3,3,3,1) A, 1 0 0
(4,4,1,1) &4 0 1 0
(3,3,22) S 1 0 0 0

To see how to use R to find all the cycles, define a principal submatrix MSﬁ
R as cbt constructed by choosing a subset of the rows of R and exactly the

- : « ' . ' . - . . . y r..;“Jc.
same subset of columns. A permutation matrix is said to be “contained” in I?
same subset of ¢
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if'it is a permutation matrix whose nonzero elements are all nonzero elements
of some principal submatrix of R. The next result is easily shown:

Lemma 9. There is a one-to-one correspondence between permutation matri-
ces contained in R and cycles. Given either the other can be directly computed.

Cycles are interesting for a number of reasons. For instance, any cycle
yields a set of dice that can be used to play the game of Section 3. As another
instance we shall use a cycle of nontransitive dice to construct a hypothetical
example that shows the nontransitivity of a criterion that might be used to
compare the performance of mutual fund managers.

This leads us to look for “large” cycles, and in particular cycles of maxi-
mum length for a given n. In preparation for our example, we find all cycles
of maximum length for n = 5. There are N5 = 12 admissible dice, listed in

Table 4. In Table 5 we display R for the case n = 5, derived from a computer

Table 4. The 12 admissible dice for w =5

die no. name faces die no. name faces
1 s1 33333 T S4 53331
2 8o 43332 8 fi 54222
3 $3 44322 9 Z 54321
4 P 44331 10 P2 54411
5 p1 44421 11 fa 55221
6 ! 53322 12 e 55311

calculation of ), and presented with a permutation of the rows and columns
that will lead to a certain order and simplicity. Note that Z has been omitted
from the matrix.

Note that the last 5 rows and 5 columns correspond to the five symmetric
dice, producing a 5 x 5 block of zeros in the lower right-hand corner. We also
have examples (not listed here) for which Q(A4, B) = 0 and both A and B
are asymmetric dice, a sitnation that did not occur for n = 4. There are no
cases, when n = 4 or n = 5, where Q(A,S) = 0 with A asymmetric and S
symmetric. This does occur for n = 6.

Now suppose we have a cycle. If A > B, call A a predecessor of B and B a
Jollower of A. The four si have the same set of three predecessors, {py,pa, p}
and no others, so at least one $i cannot appear in a cycle. Thus any cycle has
length 10 or less. Suppose there is a cycle of length 10. Then it must contain
three sequences of the form (p or p;. 85, f or fi) together with the symmetric
die ¢. Since the three ps must precede ss the 1s in rows 1-3, columns 1-6 play
no role and can be set to 0. Similarly, since fs must follow ss, the 1s in rows
1-6, columns 4-6 play no role and can be set to 0.



306 Mark Finkelstein and Edward O. Thorp

Table 5. The 11 x 11 R matrix for the case n = 5.

dieno. name p1 p2 p fi fo f ¢ s1 sz sy S

5 pp 0 0 1 0 0 1 0 1 1 1 1
10 p» 1 0 1 0 0 0 0 1 1 1 1
4 p o o o 1 0 1 0 1 1 1 1
8 f1 1 1 0 0 1 0 1 0 0 0 0
11 /% 1 1 0 0 0 0 1 0 0 0 0
6 f o 0o 0 1 1 0 1 0 0 0 0
12 ¢ {1 1 1 0 0 0 0 0O 0 0 0
1 s1 o 0o o 1 1 1 0 0 0 0 0
2 o 0o 0 1 1 1 0 0 0 0 0
3 o 0o 0 1 1 1 0 0 0 0 O
i ss 0 0 0O 1 1 1 0 0 0 0 0

Observing Table 5 now, f must precede ¢ (as the only remaining nonzero
entry in the f row is in columu c.) Note also that either f; precedes p; and
fo precedes py or fi precedes p2 and fo precedes pi. Then ¢ must precede p.
Thus. there are cycles of length 10, and they are all of the form (p, s;. f5)-
(Pk» S2- .WSV. (Pn: So- £s (e}

The relationship > determines a direction on the cycle and ¢ can be
thought of an origin of coordinates. Thinking of each cycle as a ring of 10
labeled beads, we can count the number of distinct cycles. The three s's can
be arranged in 4 x 3 x 2 = 24 distinct ways. The two f;s and the two p;s can
each be arranged in two distinet ways, for a total of 96 distinct cycles.

If we define a chain as a sequence A; > Ag > -+ > Ap. with k as its
length, there is a mapping under which each cycle produces three mrm.:i. of
length 11, distinct from all the others. To construct these chains, start with
a 10-cvele and sever it between one of the ps and the s that follows it. Then
add aw@ unused fourth s as the follower of the final p. This cut can be done in
three distinct ways (count from ¢). Note that ¢ will then appear either in place
3. 6. or 9 of the resulting 11-chain, and that the chain starts and ends with
an s. So. there are 288 distinct 11-chains. A computer prograii confirmed the

analysis.

Ezample 1. Nontransitive dice, the performance of money managers. and
match-play golf. Our results for cycles for n = 5 yield the following finan-

cial paradox: Consider 10 money managers, i=0.1.....9, whose H.m::..:m mw
in period t, t =1,2,... . T, equal I; +e;, where 1, is the return on an index

and ej; is a random error. In the real world, I; might be the 24:.5 .c: ﬁE
Q& P500 index, the managers might be running funds of large Eu;mer;.E
stocks. and e is the deviation in performance from that of the index for
manager ¢ in period ¢. If the managers have no skill, which appears ».c.:c
the predominant state of affairs, and which we assume, then the expectation

v
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Eleit] = 0 for all i and ¢. Fees and trading costs matter but, if we assume they
are the same for all 10 managers, then all returns are shifted by the same
constant. with no effect on the comparative results.

Next, choose a 10-cycle with distinct dice Ag = A; = - = Ag = Ap.
For each i, let be the random variable corresponding to A; and let
{X;t + t =1,....T} be independent and identically distributed with the

same distribution as X;. Now define Yy = a(X;; — E[X;]) = e, where a is
an arbitrary nonzero scaling constant. Define Ry = I + e;. For dice A and
B, define E(A, B) = Q(A, B)/n? = P|A > B] — P[B > A], and for random
rariables X and Y define E(X,Y) = P[X > Y] — P[Y > X]. Then it is easy

to see that for any i and 7,

.mA\f\rV = MANI.\ ..wv — MWA “»Mv:v = .WAATI.Q&L = .m_ﬁmlmiv

In the above argument we used the fact that E[X;] = m. a common mean,
which is 5/2 in this particular example. That’s why this example works for
our nontransitive dice. Thus we have the startling conclusion that, given any
manager 7 in our example, there is another manager j = i — 1 (mod 10)
who, when their two results are unequal. has a probability greater than 1/2
of outperforming him in any period. As the number of periods increases, the
probability that manager i—1 (mod 10) outperforms manager 7 in the majority
of nontied trials tends to 1.

The following theorem shows that this example can be extended to cycles
of arbitrary length.

Theorem 4. For every m > 3 there is a cycle of length exactly m, hence for
every m > 2 there is a chain of length m.

Proof. Let m > 3 and odd. Construct a set of admissible dice with n = 3m as
follows: For k = 1.2,....m—1 define die Ay by placing mass 3k at coordinate
(3m +1)/2 + m — k and place mass 3(m — k) at coordinate (3m + 1)/2 — k.
One easily checks that the total mass is 3m and that the mean is (3m+1)/2.
Define die A4,, by placing mass 3m at (3m-+1)/2. An easy computation shows
that 4y = Ay = -+ = A,, = Aq. To obtain a chain of even length p, let
m = p+ 1 and carry out the above construction. Then note that A,, = As.
and hence we can delete A; from the cycle to obtain a cycle of length p.
Although cycles are discussed in the extensive literature on nontransitive dice
and in voting paradoxes (see especially the very general and definitive work
of Saari), because of the special nature of the sets of dice we are considering,
Theorem 4 does not appear to follow from previous work. [

Theorem 4 shows that an example like the previous one can be constructed
for every m > 3: For every manager the

the criterion “is

is another who is better under
pected to be ahead more often.” (Similar examples can
be constructed by the same method from more generally defined types of
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nontransitive dice; however, this typically requires the means Eleit] = m; to
vary from manager to manager.)

If we consider golf players, where a golfer’s score on any given day is given
by par + A, i = 0,...,m — 1, and A; are a cyclic nontransitive set with
Ag = Ay > -+ > A1 = Ag, then in match play E(i,i+1) > 0 for all i
(mod m). If the dice are chosen as above the golfers all have the same expected
scores (like our money managers). Note that these same examples will apply
to tournaments involving players of equal skill in a wide variety of settings.

Thus. the criterion “better than,” defined to mean “Manager A is better
than Manager B” if A is expected to beat B more often than B beats A,
.an be nontransitive over a set of managers, even though all have the same
expected returns in any given period.

The previous examples describe expected outcomes “before the fact” or ex
ante. Corresponding examples with actual outcomes, i.e., ex post, are simpler
and more decisive. For instance, suppose we have m > 3 money managers and
their outcomes for m periods are given by Rj =i+t (mod m) for manager
i.i=0,1,...,m—1,in period ¢, ¢ = 1,...,m. Then manager i is beaten by
manager i + 1 (mod m) in all but one period, yet the distribution of actual
returns over the m periods is identical for the m managers. Only the order in
which their returns occur is different.

How do results for m-sided dice relate to results for n-sided dice? We find
that the structure that appears at any level m reappears repeatedly as an
sembedded subset” for n > m in various ways, as illustrated by the next
theorems.

Let D} be the set of all N, admissible n-sided dice. We represent each
such die d;, i = 1,...,N,, by listing the faces of the die (B4 B0 e v+ 5 )
in nondecreasing order. Thus, Z; = (1,2,3,4). Each (r1,...,2y) is an n-
dimensional vector, so we shall call n the dimension of D}, and speak of the
set of n-dimensional dice.

Definition 4 (First embedding). For each k > 1 and each n > 2, the
embedding maps hnyx @ D — D, -are defined by hor(T1,....2Zn) =
(0 von o 5 Tggs B Lo ey B8 4 K

Theorem 5. The maps hy,. ) possess the following properties:

a. hp p is 1-1.

b. v,:.»AN:V = Zntk-

¢ hoy o preserves Q: Q(hn i(A), hn i (B)) = Q(A, B) for all A, B. Hence hn .
is order-preserving as well: A= B if and only if h nke(A) = b i (B).

Thus the structure, games, and results that depend only upon property
(¢) and hold for a given n also hold for a subset of each D ;. for each k > 1.

Definition 5 (Second embedding). For cach n, the embedding maps [y :
D — D2, are defined by

1

.\.:A.L.H.L.;. 3 .Lv:v = AH,L.H -+ H.L.N + | S s =t 1,n - ..Nv
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Theorem 6. For each n = 1. 2.

.. the maps f,, eac v . }
e ps fn each have the Jollowing prop

a. fn is 1-1.

b. .\.zAN:v = N:,Tm.

w WM:A@V s symmetric or asymmetric according to whether B is
Jn N ﬂmqmm, () .QA.?ALY fn(B)) = Q(A. B). Hence f,, is order-preserving
%m well: A > B if and only if f,(A) = fn(B). o

ﬁ:m Z.E structure, games, and results that depend ounly on these four

mw\cwgfem and that hold for a given n also hold for n - 2% el m;

€. Lhe composition map foion futak—1) - frosafn : . s define
and has the same E.e%mni@ B e kS e B st

F E(fa(A), f2(B) = (;25)*E(A, B).
Properties (a)-(e) are obvious. Property (f) follows from the fact that
P[A > B] = Q(A, B)/n?.

Since N, S idly wi it 1
# e N, mwoév. rapidly with n, it is not surprising that there
embedding maps with similar properties. ‘
We wis ank
. SHJW ﬁc.ﬁizr both the anonymous referee and the editor for their
H ) _ 4 . ] U ~ v J! L . 21r
! lerous elpful comments and suggestions. The proof of Lemma 2 is :
alternative that was suggested by the referee o

are marny
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