INTERNAL POINTS OF CONVEX SETS

E. O. THORP

An interior point of a set K in a topological linear space is always an internal point of the set $[1; V, 2, 1(b)]$, as follows immediately from the definitions. Klee gives an example $[3; p. 450]$ which shows that the converse may fail for certain subspaces of the l_n spaces, even though the set K is convex. It is the purpose of this note to describe as best we can the class of topological linear spaces for which the converse fails. We show that it fails for a large class of infinite dimensional topological linear spaces. The class includes all normed linear spaces and even all pre-F-spaces. Notation and terminology follow [1] unless otherwise indicated. If A is a set, card A designates the cardinality of A.

Theorem 1. Suppose that a topological linear space E has a neighbourhood basis \mathcal{U} at the origin O such that card \mathcal{U} is less than or equal to the dimension of E. Then there is a symmetric convex set K in E having O as an internal point and having no interior points.

Proof. We suppose first that the scalars are real. Let

$$\{h_u\} \cup \{h_v\}$$

be a Hamel basis \mathcal{H} for E such that h_u is in U for each neighborhood U in \mathcal{U}. The existence of a linearly independent family $\{h_u\}$ with h_u in U for each U in \mathcal{U} follows from the absorbing property of each neighborhood and the condition on card \mathcal{U}. Let

$$K = \omega(\{h_u\} \cup \{h_v\} \cup \{-h_u\})$$

Then K is convex and symmetric. To see that the origin is not an interior point, we note first that no vector ch, where c is a member of the Hamel basis and $c > 1$, is in K. Suppose instead that ch is in K. It is easy to show that this is true if ch has the form $ch = \sum a_i h_i$, where $a_i \leq 1$, $\Sigma |a_i| = 1$, and $h_1, ..., h_n$ is some finite subset of \mathcal{H}. Since h and the h_i are members of the Hamel basis, this can happen only if $h = h_i$, some j; $a_i = 0$, $i \neq j$, and $c = a_j$. But this is impossible because $c > 1$ and $|a_j| \leq 1$.

Since h_u is in U, ch_u is in U for sufficiently small $c > 1$. But ch_u is not in K so O is not an interior point of K. There are no interior points of K for if p were such a point, $-p$ would also be interior and therefore the line segment joining $-p$ and p would consist of interior points. Thus O would be an interior point, a contradiction.

Received 21 January, 1964.

To see that the origin is an internal point, let \(x \) be any non-zero vector in \(E \). Then \(x = \sum_{i=1}^{n} a_i h_i \) for some finite subset \(h_1, ..., h_m \) of \(H \). Also,
\[\frac{1}{\epsilon} = \frac{1}{\epsilon} \sum_{i=1}^{n} |a_i| > 0 \] since \(x \neq 0 \). Thus \(\epsilon x \) is in \(K \). Now \(-\epsilon x\) is also in \(K \) so the line segment joining them is too. This shows \(O \) is an internal point of \(K \).

If the scalars are complex, we consider \(E \) as a real vector space of "twice" the dimension, i.e. choose a Hamel basis for \(E \) over the complex numbers, then work with \(H \oplus iH \), which is a Hamel basis for \(E \) over the reals. The proof is then the same as for the case of real scalars.

Corollary 2. Every infinite dimensional normed linear space contains a convex set \(K \) and a point \(p \) in \(K \) such that \(p \) is an internal point but not an interior point.

Corollary 3. A normed linear space (more generally, any subspace of an F-space, i.e. a pre-F-space) is finite dimensional if the concepts of internal point and interior point coincide for convex sets.

Proof. By Corollary 2 and the fact that an interior point is always an internal point, it suffices to prove that an internal point of a convex set \(K \) in a finite dimensional topological linear space is an internal point of \(K \). Since all Hausdorff topological linear spaces of dimension \(n \) are equivalent, it suffices to establish the assertion for the Euclidean topology.

Suppose first that the scalars are real. Let \(K \) be a convex subset of \(E^n \) \([1; 14, 2.1]\) and let \(p \) be an internal point of \(K \). Then if \(e_1, ..., e_n \) is a basis for \(E^n \), there are positive numbers \(\epsilon_1, ..., \epsilon_n \) such that
\[\{p + \epsilon_1 e_1, ..., p + \epsilon_n e_n\} \subseteq K. \]

Then \(\mathcal{L}(K) \) (see \([2; pp. 14ff]\) for definition and properties) equals \(E^n \) so \(K \) has an interior point \([2; page 16, Theorem 4]\). Therefore the interior and internal points of \(K \) coincide \([1; V, 2.1(e)]\).

The proof extends to the complex case via the device used at the end of the proof of Theorem 1.

References

New Mexico State University,
University Park, New Mexico, U.S.A.