INTERNAL POINTS OF CONVEX SETS
E. 0. TaoRE

An interior point of a set K in a topological linear space is always an
internal point of the set [1; V, 2.1(b)], as follows immediately from the
definitions. Klee gives an example .[3; p. 450] which shows that the
converse may fail for certain subspaces of the I, spaces, even though the
set I is convex. Tt is the purpose of this note to describe as best we can
the class of topological linear spaces for which the converse fails. We
show that it fails for a large class of infinite dimensional topologieal linear
gpaces. The class includes all normed lincar spaces and even all pre-F-
spaces. Notation and terminology follow [1] unless otherwise indicated.
If A is a set, card A designates the cardinality of A.

THEOREM 1. Suppose that a topological linear space E has a neighbour-

hood basis 9 at the origin O such that card 9 i3 less than or equal fo the dimen-

~eion of E. Then there is a symmetric convex set K in E having O as an
infernal point and having no inferior poinis,

Progf. We suppose first that the scalars are real. Let
{?'La}n:e 4 {ILU}UE ¥

be a Hamel basis /7 for E such that Ay is in U for each neighbourhood U/
in %. The existence of a linearly independent family {h;} with ki, in U
for each U in % follows from the absorbing property of each neighbour-
hood and the condition on eard %. Let

K= co({h 3w {—ho i f—hp)).

Then K is convex and symmetric. To see that the origin is not an interior
point, we note first that no vector ch, where % is a member of the Hamel
basis and ¢ > 1, is in K. Suppose instead that ¢k is in K. It is easy to
show that this is true if ¢k has the form ck=£i a;k;, where [a;] <1,
-1
Zjag| =1, and hy, ..., k,, is some finite subset of . Since & and the &,
ave members of the Hamel basis, this can happen only if A=k, some
J; a;=0,i3j, and e=a,. DBut this is impossible because ¢> 1 and
lol =1 : '
" Sinee &y is in U, chy is in U for sufficiently small ¢ 1. But chy is
not in K so O is not an interior point of K. There are no interior points
of K for if p were such a point, —p would also be interior and therefore the
line segment joining —p and p would consist of interior points. Thus O
would be an interior point, a contradiction.
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: To see that the origin is an internal point, let  be any non-zero vector
in E. Then == E‘,a,ht for some finite subset by, ..., b, of H. Also,
i1

1fe= f |ag} = 0 since x£0. .Thus erisin K. Now —er iz also in K
im=]

=0 the line segment joining them is too. This shows 0 is an internal point
of K.

If the scalars are complex, we consider E as a real vector space of
“iwice” the dimension, i.c. choose a Hamel basis for E over the complex
numbers, then work with Hwill, which is a Hamel basis for E over the
reals, The proof is then the same as for the case of real scalars.

Cororrary 2. Everyinfinite dimensional normed linear space contains
a convex set K and a point p in K such that p iz an internal point but nol an
inderior point.

CoroLrary 3. A normed linear spuce (more generally, any subspace of
an F-space, ie. a pre-F-space) iz finite dimensional if the conceplz of internal
point and interior point coincide for convex sefs.

Proof. By Corollary 2 and the fact that an interior point is always an
internal point, it suffices to prove that an internal point of a convex set K
in a finite dimensional topological linear space is an internal point of K.
Since all Hausdorff topological linear spaces of dimension » are equivalent,
it suffices to establish the assertion for the Euclidean topology.

Suppose first that the scalars are real, Let K be a convex subset of
E»[1; IV, 2.1] and let p be an internal point of K. Then if ¢, ..., ¢,
is a basis for E*, there are positive numbers ¢, ..., ¢, such that

[pteae. ... pteel<=k.

Then Z(K) (see [2; pp. 14f] for definition and propertics) equals E=
so K has an interior point [2; page 16, Theorem 4].  Therefore the interior
and internal points of K coincide [1; V, 2.1{c)].

The proof extends to the complex case via the device used ai the end
of the proof of Theorem 1.
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