FINITE DIMENSIONAL NORMED SPACESt
E. 0. TrORF

Several characterisations of finite dimensional normed spaces are well
known. The usual characterisation is some variant of the theorem of
F. Riesz [I; Theorem IV 3.5]. .

A normed linear space is finite dimensional if and only if ifs closed unit
aphere is compact. Numerous additional conditions may be given. For
example, it iz well known (see, e.g. [4; p. 190, Ex. 1, and p. 193, Ex. 1])
that a normed linear space is finite dimensional if and only if its conjugate iz
finite dimensional. Another condition is that @ normed linear space i
finite dimensional if and only if every linear functional is continuous. The
proof is straightforward. We give below two characterizations which we
believg are new.I

TueoreMm 1. A normed linear space X is finite dimensional if and only
if itz image TX is closed whenever T is a continuous linear mapping of X
into o normed space.

Proof. It is well known that finite dimensional spaces remain finite
dimensional under linear maps and that finite dimensional subspaces of
normed linear spaces are closed. Therefore it suffices to prove that if a
normed space has the stated property, then it is finife dimensional.

If, instead, X is infinite dimensional and has the property, then X
must be complete. Otherwise, it can be isometrically imbedded as a dense
proper subspace of its completion, contradieting the hypothesis. The set
B(X) of bounded linear operators from X into itself is therefore complete
in the operator norm topology. The subspace B.(X) of compact linear
operators is known to be a closed (thereforc complete) subapace.

Using well-known technigues we show that there is a compact operator
in B.(X) with infinite dimensional range. Define a sequence {P,} of
one-dimensional operators of norm 1 as follows. Choose z; in X such that
|z.]]=1. Letf,(cx,) =c for all sealarse. By the Hahn-Banach theorem
there iz a continuous extension F; of f; to all of X. Define P, by

Py(z) = F,(@)ay[| Fy|

for all z in X. The norm of P, is evidently 1. Continuing by induetion,
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choose z, in X such that ||z,[|=1 and P;(x,)=0 for j=1,...,n—1.
This is possible because X is infinite dimensional and the codimension of
fz: Pyz)=0,j=1,....,5—1} is less than or equal to n—1. Let
JalagzL...deyx,)=¢,. Let F, be a continuous extension of f, to all
of X. Define P, by P,(x)= F_(z)z,/|| F,|] for all z in X. The norm
of P, is evidently 1.

The series EP.}E‘umrotgesinj;heupemmrmrmtoammpmt
. =1
operator P since B (X) is complete. The range of P contains {z,}, since

n=(E Piz) I Bz PE1F 1)
-1

as m-+o0. Therefore the range of P is infinite dimensional. By our
hypothesis, the range of P is closed. This contradicts the well-known
fact that the range of a compact operator cannot contain an infinite
dimensional closed subspace. To see this, suppose T is compact and the
range R(T') of T contains the closed subspace F. Then if T'; is the restric-
tion of T to E= T(F), T, is a compact map from E onto the Banach
space F. If N is the null manifold of T, then the induced operator T,
from E[N onto M is compact, one-to-one, and onto. It is an isomorphism
by the closed graph theorem, hence F is finite dimensional.

DerrsiTiox. A normed linear space X has property (D) if and only if
Jor every collection {M_}.. . of nested dense linear manifolds, N M_ is
dense in X. -

TueoreEM 2. Amrmﬂﬁmrxpawiaﬁnitzdimmﬁmﬂifmﬂmﬂry{f
i khas properly D.

Proof. If X is finite dimensional, X is linearly homeomorphic to En,
whence it is clear that the only dense manifold is X itself, therefore X
has property (D).

If X is not finite dimensional, we show X does not have property (D).
SBuppose it did. Then an easy application of Zorn’s lemma shows that
there is a minimal dense linear manifold M in X. Choose any & 0 in
M and extend {A} to a countable bounded Lnearly independent subset
b, by, by ..., h,. ... of M. Consider the sequence defined by A’ =47,
by = (L4 1) bbby, =14 @) A+ B hgs . By’ = (14 ()t () K, ..
The sequence k', &', ..., k', ... is linearly independent and therefore can
be extended to a Hamel basis II' = {A'}; .5 for M. Now

lim (h,’—h) = lim (1/n) (hy+-B) =0
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so A, the manifold spanned by H'—h{, is dense in M and therefore in X.

Yet M’ ; M, contradicting the hypothesis that M is minimal.

Remark. The proof shows that there are no minimal dense subspaces
of an infinite dimensional normed space. It also shows that in the step
from a manifold M to a manifold A7, dense in M and with codimension 1
relative to M, any one element of M can be excluded from 3.

The guestion naturally arises as to what extent Theorems 1 and 2
hold in topological linear spaces. A partial answer for Theorem 2 is
given below.

THEOREM 3. If E iz a lopological linear space which has a dense Hamel
basis, F does not have property (D). Hence Theorem 2 extends to such spaces.

Proof. Let H={h};.z be a dense Hamel basiz. Let .# be the
collection of manifolds which are both densze and are the span of some
subsct of H. Partially order .# by inclusion. Suppose each totally
ordered subset {M }.. s has an upper bound B in .#. Then B is dense,
hence M = N M, is dense because M > B. Also M is the span of the

acd
elements of H which are common to all the M, so Me.#. Therefore A7

iz an upper bound for {37.}.

From Zorn's lemma it follows that there is a minimal element N of
the set .#. The elements of H which span N are therefore dense. If we
delete one of them, the remainder are still dense, and span a smaller dense
manifold N’, contradicting the minimality of N. Thus some totally
ordered subset {M_},. . does not have an upper bound B in 3. But
ginee M is spanned by a subset of H and iz contained in each M. and 3F
fails to be an upper bound, M is not dense, Therefore F does not have
property (D). ;

Remarks. Klee has shown that if F has a neighbourhood basis at the
origin with cardinality less than or equal to the dimension of E, then E
admits a dense Hamel basis. A proof of this theorem appearsin [2; p. 448].

Theorem 2 is consequently a corollary of Theorem 3. However, the
simpler shorter proof given may be of some interest in itself.

Not all topological linear spaces admit a dense Hamel basis nor do all
topological linear spaces satisfy Theorem 2. Let X be any infinite dimen-
sional veetor space and let X+ be the set of all linear funectionals on X.
Then the X+ topology for X [1; p. 419] makes X alocally convex topological
linear space. It can be shown that all subspaces of X are closed in the X+ -
topology. Thus the only dense manifold is X itself so the space has
property (D). No Hamel basis is dense for if one were, we could omit one
element and the hyperplane spanned by the remaining elements would be
dense and proper hence not closed.

1 here H'—5 denotes the =0t of cloments I loss the element A.
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