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CONCAVE UTILITIES ARE DISTINGUISHED BY THEIR
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l. INTRODUCTION

Mossin (5], Thorp (7], and Samuelson [6] showed for spe-
cific pairs of utility functions that different utilities can lead to different
optimal strategies. In particular the optimal investment strategy for the

utility logx is not necessarily the optimal strategy for the utility i x¥
(v # 0).

These examples suggest the following generalization, of obvious im-
portance to general utility theory,

Consider a T stage investment process. At each stage allocate re-
sources among the available investments. Each chosen sequence A4 of al-
locations (“strategy”) yields a corresponding terminal probability distribu-
tion F';.‘, of assets at the completion of stage T. For each utility func-
tion U(-), consider those strategies A*(U) which maximize the expect-
ed value [U(x)dFj}(x) of terminal utility. Assume sufficient hypotheses

&#13 -




on U and the set of F4 so that the integral is defined and that further-
more the maximizing strategy A*(U) exists. Then is it true in general
that A*(U,) is not A'{Uz} for "distinct” utilities ', and u,?

As we now show, the answer is yes: the Mossin — Thorp — Samuelson
results for specific utility pairs generalizes to the principal class of interest
in modern utility theory.

2. THE MAIN THEOREM

We prove this for the class of "interesting” concave utilities. We be-
gin with more special hypotheses.

Theorem 1. Let U and V be utilities defined and differentiable
on (0,s=) with U'(x) and V'(x) positive and strictly decreasing as x
increases. Then if U and V are inequivalent, there is a one period in-
vestment setting such that U and V have distinct sets of optimal strat-
egies. Furthermore, the investment setting may be chosen to consist only
of cash and a two-valued random investment, in which case the optimal
strategies are unique.

Corollary 2. If the utilities U and V have the same (sets of) opti-
mal strategies for each finite sequence of investment settings, then U and
V' are equivalent.

Two utilities U} and U, are equivalent if and only if there are
constants a and & such that Uzix}=an (x)+ b (a=0), otherwise

UI and U, are inequivalent.

Let X, (1<i=< k) be the (random) outcome per unit invested in
the ith "security”. We call (X,,...,X,) the investment setting. We as-
sume X, is independent of the amount invested. Let the initial capital be
Z, and let the final capital be £ . A strategy is an allocation W=
= (w,,...,w,) where w, is the fraction of Z, allocated to security /.

We assume w, > 0 for all i, that 2 w, =1, and that wealth is infinite-
i

ly divisible. Thus the w;, may assume any real values consistent with the
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constraints and with the requirement that E w,X; is in the domain of
the utility function U. !

Given a particular U satisfying the hypotheses of the theorem, sup-
pose EU(Z,(W)) is maximized by some strategy W*. Then W® isan
optimal (or best) strategy for U -relative to the given investment setting.

Proof of Theorem. Suppose that ' and ¥ have the same optimal
strategies for every one period investment setting consisting of cash and a
two-valued random investment. It will be shown that U and V are equiv-
alent, which will establish the logical contrapositive to the theorem and
hence the theorem itself.

In the proof of theorems we shall assume for technical simplicity
that the initial capital Z, = 1. When theorems have been established for
this case, consideration of the transformation U(s) = U(Zs) = U(1)
gives the theorems for arbitrary Z; > 0. We shall therefore state the gen-
eral results without further comment after proving the Z; = 1 case,

Let the only investment (besides cash) be X where P(X=1-b)=
=g=1-—p and P(X=1+a)=p, where a>0 and 0<p,b<]l.
The choice 0< b< 1, rather than simply b= 1. has been made because
for b=1 and w= 1, the expression U(0) would arise and 0 is not
necessarily in the domain of U (e.g, U(x)=logx). The available strat-
egies are 1o allocate the fraction w of recourcesto X and 1 -w to
cash, with 0<w=< |.

At the end of the period, we have
(Z1) EV(Z,(w)) = pU(] + aw) + qU(1 — bw) = fiw) .

To find the maximum, consider f'(w) = apU'(1 + aw) — bgU'(1 — bw).
Since U'(r) strictly decreases as ¢ increases, we have ['(w) decreasing
strictly as w increases. Thus there is a unique maximum. If f'(w*) =0
for some w* with 0< w*® < 1, then the maximum is al this unique w*.
If fiw)> 0 forall w with 0<w=< 1, then the unique maximum is
at w= 1. Ifinstead f(w)< 0 for 0< w= 1, then the unique maxi-
mum jis at w= 0.
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If f'w)=0 we have %{:t—ﬂ-%. Suppose a>0 and
U'{I+~—]

v(3)

we can solve 1=2 for p, with 0<p< 1. Thus for each a>0

%{b{l are given and we wish f’[ﬁ] = (. Letting \ = ———r—

there is a choice of p, hence an X, such that w'-_% is optimal for
v,

Now suppose that U and V have the same optimal strategies for
all such investment settings. Then w'=% for V also and we have
ri+55) v(1+35)

1y ]

U'(3) V'(3)

we find V() =alU'(t) (t>1) whence V(H)=al()+ 8 (t>1).

for all a> 0. Letting V’ [%] = mlf'{%]

When r< 1, we proceed similarly. Choose X sothat P(X=2)=p
and P(X=1—-b)=gq, where 0<b< 1. Then

EUZ,(w)) = pU(1 + w) + qU(1 — bw) = fiw)
[w)=pU'(1 + w) = bgU'(1 — bw)
and the maximum is unique and located as before.
-— —E'{_IZ;‘!_[-__P_ T =
If fiw)=0 we have A= Ta+w - o and given w= b,
0<b< 1, wecan choose p with 0<p <1 such that 1=£. Then

as before we find V'(1 —ab) = vU'(1 — ab) and since @ and b can be

any numbers such that 0<a, b< 1, then F(ri=+4U'(H (0<t< 1)

Vil + &)
where y= b)) But 4 was shown to be a.

Thus () =alln+ 8 (0<t<1). Also F(1)=ali(l) + e. Hence
Wiy—call(y=8 if t>1, & if t<1 and € if r=1. But F(r) -
—all() is continuous s0 f=8-=¢ s0o VFOh=all)+ 5 Thus U and
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V' are equivalent under the assumption that they have the same optimal
strategies for all one period investment settings containing only (cash and)
a two-valued random investment, The logical contrapositive assertion is the
Theorem. This completes the proof. The Corollary follows a fortiori.

Note that a single investment setting of the type in the proof will not
in general distinguish inequivalent utility functions. For instance, if E(X) <
=< 0 then w= 0 is the unique optimal strategy for all the utilities of
Theorem 1 (more generally, for all strictly concave utilities, as defined be-
low) so such X distinguish between none of these utilities. It may be of
interest to characterize each investment setting by the pairs of utility fune-
tions it distinguishes between or "separates”, and to similarly characterize
collections of investment settings.

For a security X, let m(X) and M(X) be the greatest and least
numbers, respectively, such that P(m(X)< X < M(X))= 1. Then for a
collection € of investment settings whose securities are {Xn: axsAdl,
where A is some index set, let m, = inf{m{.l'ﬂ}: <A} and M,{ =
= sup{M(X ). a€ A}. Evidently, if U(r)= V() for m, <t<M,, the
collection C will not separate U/ and V. Thus a collection with m =
=0 and M, == will be needed in general to prove the conclusion of

Theorem 1.

Next we generalize Theorem | to concave non-decreasing utilities de-
fined on (0, =). We do not make the common assumption that first or
even second derivatives exist. A function f is concave on an interval [
if for each pair of points x, #x, in I and each number s with
0<s< 1, then flsx; + (1 —s)x,)=sflx))+ (1 —9)fix,). If flsx, +
+ (I —s)x,)> $flx ) + (1 — $)fix,) always, then f is strictly concave.
(We use "concave” to mean "concave from below’)

The more general definition includes such computationally and empir-
ically natural functions as the "polygonal™ utilities. In these, the utility is
a sequence of linear segments. The vertices are such that the function lies
on or below each segment extended, and the ordinates of the vertices in-
crease as the abscissas increase,
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First, recall some facts from the elementary theory of concave func-
tions. (Most texts give results for convex functions. But f is concave ex-
actly when —f is convex so the theories of concave and convex functions
are equivalent.) A concave function is either continuous in the interior of
its domain or non-measurable. An increasing function is always measurable
so our utilities are continuous. A continuous concave function f defined
on an open interval has a left derivative f° and a right derivative f
defined everywhere. (If the left endpoint & is included in the interval of
definition, then f” (@) is not defined and S, (¢) may or may not be de-
fined. Similarly, if the right endpoint b is included in the interval of de-
finition, then f(b) is not defined and S’ (b)) may or may not be de-
fined.) Furthermore, f' (f)=f, () for all ¢ except the endpoints in
the domain of f and whenever ¢ <, then f'(¢)=f'(¢,) and
f:,":‘l] = f;_ (t,). There are at most countably many points where f' (¢) >
> f; (#); otherwise f'(f)=f_(f)=['(t) and [ is differentiable. Proofs
of these assertions and further theorems on concave functions are given for
instance in Hardy, Littlewood, Polya [3].

Theorem 3. Let U and V be concave utilities defined on (0, =),
one of which is strictly increasing on (0,1 + &) forsome e> 0. If U
and V are inequivalent then there is a one period investment setting such
that the sets of optimal strategies for U and for V are distinct. The in-
vestment setting may be chosen to consist only of cash and a two-valued
random investment. If U and V are each strictly concave on the same
one of the sets (0,Z,] or [Z,,=), then the optimal strategies are unique
and U and V therefore have distinct optimal strategies.

Proof. We proceed as in the proof of Theorem 1 until we obtain
equiation (2.1).

Note that f is concave and that if U is strictly concave on either
(0, 1] or [1,==) then [ is strictly concave. Now flw) is a continuous
function defined on the closed bounded set {w: 0<w< 1} hence f
has an absolute maximum. Let w* be a point where f attains its max-
imum. It follows from the continuity of f that the set of all such w*
is closed.




From the concavity of f, the set of points w* where f attains its
maximum is also convex, hence it is a closed interval in [0, 1]. If f is
strictly concave the maximum is unique.

For any w* with 0<w* <1, f isa maximum if and only if
S (w*) = 0= f,(w*). A maximum occurs at w* =0 if and only if
f;{{}} < 0. A maximum occurs at w* =1 if and only if f' (1)=>0. If
the maxima occur on an interval [aq, #] with 0= a< b= 1, then
fa)y=0 and f."_{a}= 0, f'{(b)y=0 and f_;_{b}iﬂ, and f'{w*) ex-
ists and is zero for a< w* < b,

Equation (2.1) yields

Fiw)=aplU' (1 + aw) = bgU’ (1 - bw) =
{2.2)
> apUl (1 + aw) — bqU, (1 — bw) = £, (w) .

Since U’ (r) and U’ (#) are non-increasing as f increases, it follows
from equation (2.2) that f' (w) and fL(w) are non-increasing as w in-
creases.

Let ¢ besuchthat 0<c¢<b and U'(l —¢) and V(1 —¢) are
defined. This is possible because U' and V' are both defined except at
countably many points hence there are uncountably many points in (0, 1)
where both U" and F' exist. With @ and b already given, choose

W= % Consider now the case where U’ [ 1 + a_;-] > 0. Then we may
choose p with 0<p <1 in equation (2.2) so that f’_[%} = 0. This
means fl[%} < 0 and since w= E is not an endpoint of [0, 1] this

thus <

means f attains its maximum at b is optimal for U in the

given investment setting.

£
bi‘

Since U and ¥ have the same optimal strategies, w = % is opti-
mal for V° hence V attains its maximum there so for w = %,
g (wy=apV' (1 +aw)—bgV' (1 —bw)=0 and apV_’l_{l + aw) —
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~bqV, (1 —bw)=g,(w)<0. Note that g’'(})>0 and the fact
V' (1-¢)>0 implies that V' (1+ %) > 0. We may show similarly
that if V' (14 %) >0 then U’ (1+%)>0. Since a is chosen in-
dependently of & and ¢ this means that foreach > 1, U"(N>0
if and only if ¥’ (£)> 0. But this is readily shown to be equivalent to
the statement that {f: U() = sup (1)} = {r: V(1) = sup F(¢1)}, i.e. that
if either U or ¥ become horizontal for = e > 1 then they both be-

come horizontal for t=e> 1, For t>e, we have of course U'(f) =
= V'(t)= 0. For r<e, the argument continues as follows.

From f' (w)=0, mv;[n%):mr{l-c]. noting that

v (1+%)
U' (1 —¢)=U'(1 —¢). Thus W=% From g'(w)=0, it
v (1+%) ,
follows similarly that -—],-,“—_fl—;g. Letting a = V{: =) yields

v (1+%)>aU (1+%). Since the choices of b and ¢ were in-
dependent of that a, the result holds for all a> 0, therefore V' (1) =
= al’ (1) forall t> 1.

A similar argument shows that V(1) < o/ (1) forall 1> 1. Thus,
except for at most countably many points, ¥'(r) = al’'(r) for r> I.
Now U and V are readily shown to be absolutely continuous on any
closed subinterval of (1, <), as a consequence of the fact they are con-
tinuous, concave, and non-decreasing, thus ¥ — al/ is absolutely contin-
uous. The absolute continuity of U — «F and the fact that (V —al)' =
=0 almost everywhere implies that V —al/=j3, a constant
(Goffman [2], p. 242, Prop. 12).

A similar argument shows that V(f) = allir)+ ¥ for t< 1. The
role of 2 in the proof of Theorem 1 is played by any number ¢ such
that 1<ec¢<e and U'(c) and V'(c) are both defined. One then shows
as in the proof of Theorem | that F(fi=alilf)+ § for 0<t<e= We
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have established the contrapositive assertion as in the proof of Theorem |.
This completes the proof.

The hypothesis that either U or V (hence both, from the proof)
is strictly increasing for a positive distance to the right of 1 is required.
If instead U and V are merely concave and non-decreasing, the conclu-
sion of Theorem 3 need not hold. For instance, let U(n)= V(=0 if
t>d, where 0<d< 1. Let U(r) and F(r) each be extended to
(0, d) so that they are continuous, concave, and strictly increasing on
(0, d). Then all such utilities have the same optimal strategies, yet many
pairs are inequivalent.

To obtain an inequivalent pair, let Uir)=r—d if 0<r<d and
let ¥(r)= — (¢t —d)*. If for some constants « and B, V(1) =alin +§
then V(1) = alU'(r). But V(1) = — 2t —d) % a= al'(1).

To see that all such utilities U have the same optimal strategies, note
that W= i:wI s wkj is optimal for the investment setting [Xl, —

.. Xy) if and only if P(Zw,X,>d) =1, in which case EU(Z (W)=
= 0. Ifinstead P(Zw.X,<d)>0 then for some €>0, P(ZwX,<
<d-e)=5>0 Then EUZ (W) < 5Ud—-€)<0 so W isnot optimal.

3. OTHER SEPARATING FAMILIES

We next establish the conclusion of Theorem 1 using investment set-
tings with n points in their range. We determine the effect of varying the
payoffs (x,,...,x, ) and their probabilities (p,,...,p, ) separately.
One surprising conclusion (part (b)) can be stated in terms of an example.

Suppose X consists of betting on a wheel of fortune divided into red,

white and blue sectors, with payoffs of %%, and %

if U and V are inequivalent on [%,%] the areas of the sectors may

be chosen so U and V have distinct optimal strategies. But if the wheel

is divided into just red and blue sectors, with payoffs of % and % then

respectively. Then
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there are two inequivalent utilities on [%, %] which have the same opti-
mal strategies for every choice of areas for the two sectors,
Theorem 4. Suppose U and V are increasing strictly concave util-

ities on (0,=). Let X be a random variable with outcomes 0<x, <
<x,<...52x, with x, <1 and x > 1. Suppose P(X=x,)=p, >0,

4]
*_Z-”i=1'

(a) Let n and the p, be given. If U and V have the same opti-
mal strategies for each X (ie x,.....x,  vary) then U and V are
eguivalent,

(b) Let n and the x, be given. Suppose U and V' oexist and
are continuous at 1. If U agnd V have the same optimal strategies for
each X (ie Pps-vanby vary) and at least three x, are unequal to 1,
then U and V are equivalent on |Z o X1 zﬂxﬂ 1. If exactly two of the
x;'s are unequal to one, there are utilities U and V which are not equiv-
alent on [Zﬂxl, Zox, |, but which have the same optimal strategy far
each X,

Proof. Assume £, =1. Let R = X—1 and r,=x;—1. Then in-
vesting w in X gives an expected return (with respect to U) of

n
E(U(WR + 1)) = er p,Uwr,+ 1). Each function Ulwr, + 1) is differen-

tiable except at a countable set C, of points, so except for w in the

countable set C, U...uUC the expectation E(LiwR + 1)) is differen-
n

dE(LAwR + 1

{ I|:'lf‘ﬂf‘ - r=21
function ¥(wr, + 1) is differentiable except at a countable set. Thus, ex-
cept at a countable set D of points in [0, e] both E({wR + 1)) and
E{¥(wR + 1)) are differentiable functions of w. They are also strictly
concave functions of w.

tiable at w with pi.rl.U‘(wri + 1), Similarly each

For part (a) let p,,....p, be given and choose w, in (0, 1)=0n.
Consider the vectors o = {U'{worl + 1), ..., Ullwgr, + 1)) and f=
= {V'{wurl + 1),..., V‘[Wu’n + 1)). Suppose that the non-zero vector
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T=(¢[:0y-+.:6,) I8 parpendicular to @ ie., the inner product

=max —, l<€isn.

i;_ o g

Since each component of « is positive, some ¢; > 0 and some ¢ < 0,
hence some x,> 1 and some x;.{ 1. Also r,+1=x,> 0. Then
dE(U(wWR + 1))

dw Iw =w

(ce, ¥) = 0. Choose r, =

"
= I—le Pf’]'Ur'[war.r +13=0 and E(UwWR+ 1))

has a maximum at w,. By hypothesis E(F(wR + 1)) has a maximum
dE(V(wR + 1))
dw |W=wn

at w, and, since it is differentiable there,

o

= Z prViiw,r, + 1) =0 ie, (§,7)=0. Hence the set of vectors per-

pand:cular to o is also perpendicular to § which implies that §= aa.
Since the components of « and § are non-negative, a = 0. Equating
components

(3.1) Ulwyr, + 1) = aV'iwyr, + 1)

where a is a non-negative functionof r,...,r, and w
and V are strictly concave there is a point f;, not in D, w, <1, <1,
with V’{JU),} 0 and U'{ru}} 0. Choose r, so that wyr, + 1=1¢,,

choose r, >0 with ¢=w,r, + 1 notin £, and choose r; <...<r,

: i
0" Since U

50 they are not in D. Then U’(:Dj =alti,. .2ty wﬂ}V'[rD} and
Uity
U'szrz +1)y=alry,.... 7, WDJV’(M.-'I:]J"2 + 1), Thus a= --V—.Uﬁb is

constant. So F'(f)=al'(t) forany t>1 notin D. Since ¥V and U
are absolutely continuous on any closed subinterval, V(f) = al(s) + b

for all #> 1. A similar argument shows that F(r)= U1+ d for r<1
Viity)
with ¢ = T r“}l = g. The equivalence of U and V now follows (as in

the proof of Theorem 1) from their continuity.

For part (b) suppose that the x, are given, with 0<x, <x, <...
Y We proceed as before, but now consider,
for 0<w, <1 and U,V differentiable at wor; + 1, 1=j=n, the
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vectors o= (ry U‘[wnrl o | Y o wyr, + 1)) and 'ﬁ':

=(r,V'(wgr, + 1),...,7,¥'(wyr, + 1)). Since a has both positive and

negative components there is a vector (d -dr----d.] perpendicular to
d.

——— thus p,>0 and !Z'p..= 1,

2 d,
=1

and define X by P(X=x;)=p, Thus

a with each d,> 1. Choose p, =

0=@(d,dy...,d)) = 2 ——rU'wor, + 1) =

i=1 1

- SRR + 1))
dw =wyp

_ @ @y,...,d)
By hypothesis dE{U(::‘E+ H}Iw-wn= 1 2 =0 so
24
i
@,(d,,...,d,))=0. Suppose that y=(e,,e,,...,e,) is perpendicu-
s ‘i*dnd:
lar to a. Let d, > max|e| and choose p, = —————. Note that
2’;*%‘;

=1

n
p,>0 and ;-21’:‘ 1. Thus

dE{U{:wR e — f;_z; pAr U (wor; + 1))

and letting D=!§ {"; + dod!} gives

1 1 '
ﬁ!'jl er,U'(wyr, + 1) + D % deﬁU (wyr, + 1) =

S

=5 @D+ d@@,.....d)=0.
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dE(V(wR + 1))y
dw w=mwp

coeyd,)) =@ )= 0. Thus

Hence, = 0. This yields (B1y) + d,@, (d,, ...

(3(2) Uitwgr, + D= alp , Poy o B WedF W1 1 1} (1Si5n).

For w in (0,1) with U, V differentiable at wr,+ 1 (1 <i=n) we

have (3.2) with Wq = W. Consider the quotient

(3.3) h{w}l=ﬂ{p1,...,,;J",W}=W'_r"l—} (l=i=n).

First look at the case where at least three x.'s are unequal to one. Sup-
pose that x, < 1<x, | <x, ; the proof where two or more points fall
to the left of 1 is similar.

Let ¢(w)=wr, + 1. The countable collection of functions

U, VU, Vogrl, Usgilog ogil, Vogilog o7l

Uegilog, jo0itcw o0, Voulog 1og og o
o g, L ...} issimultaneously differentiable except at a countable set of
points IJD in {0, 1).

Choose ¢ in (l,xn}—Dﬂ and write r=w;r +1, so w =
=g Yo, andset ¢, =w,r, [+ 1=y,  [e, (). We can also write
ty=wyr, + 1w, =g 1{1‘1}_ By (3.3) we have h(w,)= h(w,), since

7 and F are differentiable at Wy and W,. Note that w, <w,, in

+
o n—1 c
fact, W, = ?'-.wl with A = : Setting by=wyt, _; 1 | B @, l"th]‘
ty=wyr, + 1 and w, = ¢, 1(s,). Then h(w,)= h(w;) since U and

V' are differentiable at w, = ¢, 1o ¥, 1 ° ¢ Ly and at w, = ¢;‘ o

o, _ 0 :p;l o, 4 oW L(#). Continuing inductively L=wi _, + 1=
=Wyt 1 and Wiy }-.w!. Iterating this equation Wiy = Nw, =0
as j- o=, thus h{wl )=...=h(w, ) k(1) since 7' and V' are con-
tinucus at 1. Hence the equation g—:g‘g = k(1) holds except for count-
ably many ¢ in (l,x,) and thus, since U and V are absolutely contin-

uous on any closed subinterval, U(f)=h(1)F(#) + ¢ forall ¢ in [1l,x, )
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Let ¢t belong to (x, 1) with U and V differentiable at wr;.-l- 1,

l<j=<n Then r=wr + 1 and from equation (3.3) g{g =

U'{wrn + 1)
T Vwr, + 1)
closed subintervals of (x,, 1), U(#) = A(1)¥(#) + d. The continuity of
U and V at 1 implies that ¢=d and thus U and V are equivalent
on [x,,x,].

= h(1). Since U and V are absolutely continuous on

To complete the proof we must consider the case where there are on-
ly two x,’s distinct from one, say, 0<x <1<x,. Let g, beany
non-constant positive function on [1, x,] with a continuous derivative
which is zero at 1. Define g on [x,,1] by glwr, + 1) =glwr, + 1)
for 0=w=1. Choose ¢ sothat max |g'(f)l—a- min [g(H|<

It X S1Sxy

t 1 —af T
< 0 and define U= [ rﬂfdr:% and V(£) = [e g(ndt.
0 o

Because U"(t)= —ae=® <0 and V()= (g (t) —aglt) <0, U
and ¥V are strictly concave. Also U'(f)=e % and V'(H)=e *g(s) are
positive so U and V are strictly increasing, Clearly U and ¥ are not
equivalent on [x,,x,].

For these two functions & and V and 0<w-<1,

&w--n) =rp, Viwr, +1)+r,p, Viiwr, + 1) =
=rp,&wr, + ]]U'{er + 1)+ 1"2;:11251[W‘2 + 1}4'[.'”[14:1"2 + 1) =

dE(U(wR + 1))

= g‘(wrl + 1) e :
dECU(WR + 1)) . . .. GE(V(WwR + 1)) _
Hence S =0 if and only if G =, and so

wy. (0<wy < 1), is an optimal strategy for U (with respect to Xy if

] : 5 s +
and only if it is an optimal strategy for V. If the derivative dE{U{‘;ﬁ 1))

is never 0, the eguation above shows that it has the same sign as
dECFIwR + 1))
dw !

so 0 (or 1) is an optimal strategy for L7 if and only

— B26 —




if it is an optimal strategy for V.

We have seen that U and V' are two utilities on [x,,x,] which
are not equivalent, but which have the same optimal strategies for all ran-

dom variables with outcomes X, and Xy.

Remark. Our proofs may be modified readily to prove the theorems
when U and ¥V are defined on the closed interval [0, =) and also when
the interval is (¢, =) or [¢,=), with ¢< Z,. Presumably ¢> 0. (Al-
ternately, the [c, =) result implies the (c, =) result: if Uix)= VF(x) on
every interval [c+€,) (0<e<Z, —¢) then Ulx)= F(x) on (c,=).)

4. QUESTIONS FOR FURTHER INVESTIGATION

Friedman — Savage [1] and Markowitz [4] have shown
that utilities which are not everywhere concave are of interest. This leads
us to a question which we have not been able to answer yet:

Is the class of utilities which are continuous and strictly increasing
(and differentiable everywhere, bounded, and even strictly positive deriva-
tive, if you like) distinguished by their optimal strategies?

In the real world factors such as human error, the discreteness of as-
sets and monetary units, etc. make it in general not possible to choose the
optimal allocation W* = (w],...,w;). The continuity of the utility in
conjunction with boundedness of the attainable utilities implies that "suf-
ficiently small” deviations from W* will ensure that the realized utility
is "close” to the optimum.

One feels as well that in the real world, the exact values of the utility
function should not be critical. In other words, if two utility functions are
somehow "close,” the consequences of choosing one rather than the other
should be “close,”

What should it mean for two utility functions to be “close? ™ First,
observe that we must define closeness not for functions, but for equivalence
classes of functions. Let U be a utility. The equivalence class of U, writ-
ten [L7], is the set {V: V=al/+ 3, a> 0}. Fortheclass § of bounded
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utilities, i.e., M(U)= sup U(¢) <=, m(U)= inf (1) > — =, we suggest

that each [U] equivalence class be represented by ﬁ*—-g:f‘

Note that M(D)=1 and m(0)=0. Then the "closeness” of U and
V, ie,of [U] and [V], isdeﬁmdt?_be ﬂp[ﬂ(l}— F{r}] and written
either d(U, ¥) or d((U},[V) or aT, V).

We now show that U/ and ¥V can be "close” yet the optimal strat-
egies for U and ¥V need not be. For n= 2, let ffu and ?“ be de-
fined as follows: ' '

_ 2nt ; 4 ; Yo
ﬂn“}‘_'—n+1‘l if 0<t<1+- and 1 if > 1+
. ] " 1
P =""5t-1 if 0<t<1+,
t+n—3 . 1

a_1 f 1+, <£<2 and | if 1>2.

Then d(¥,, 7,)= 1. Now choose an investment setting consisting
only of cash and the security X, where P(X=1-¢)=g, P(X=1+a)=
= p, %{a{l, and 0<e¢,p,g<l. Assume Z, = 1. A calculation

shows that if ap > ge (2n -ﬁli{’; — nﬁ then the unique optimal strategy

for U s w*=ay and for ¥V, the unique optimal strategy is w* = 1.

Thus for any & > 0 we can construct sequences ﬁn and i’l such
that d(0,, 7 )>0 as n+>e and |w*(¥) - w*@ )i=1 -8, where
w*{ﬁ'} means an oplimal strategy for U

Even though a small "error” in the utility function can lead to a large
change in optimal strategy, it can only lead to a small change in conse-
quences, in the following sense. (We use the abbreviation (W) for

Ev(z, ‘Z wX,). Thus for cach W, U(W) is a number and
ulz, .IZwrx;] is a random variable.)

— 2% -




Lemma. If d(U ¥ is"small” then Diw*(P)) = Ow=Dh) and
Vw0 = Piw*(P), ie, if U and V are "close,” an optimal strate-
gy for one is "nearly optimal’ for the other,

Proof. Let d{f}, 17')'5; e so V(n+e> ). Then for any alloca-
tion W, P(z, %'win] +e>0(z, IZ'W;.XI] and E(P(2, ?,'wfxf] +
+e)=E(P(Zy 2wX,))+e>ED(Z) ZwX), or PW)+e> UW).
Interchanging ¥ and ¥ in the argument yields Ow) + e F‘(H"] 50

| J(w) — V(W) | < e. The choices for W of W*(Th and W*(P) yield
the conclusion of the lemma.

The lemma and the example show us what may happen if we replace
a U by anearby V which mnay have more desirable properties, such as
differentiability (of various orders), strictly increasing, etc.: The optimal
strategies may change drastically but the maximum utility over all strate-
gies changes only slightly.

Mote added in proof: The authors have since extended the central re-
sult of the paper, Theorem 3, as follows.

Theorem. Let U and V be continuous non-decreasing functions
defined on an arbitrary interval I of the real line. Then if U and V
are inequivalent, there is a one-period two security investment setting such
that U and V' have distinct optimal strategies if either (a) U and V
are in the class of all functions which are either concave or convex, or
{(b) U and V are in the class of all functions with a second derivative
which exists and is continuous, except perhaps for a set of isolated points.

Thus the Theorem includes the utility functions generally encount-
ered.
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