A partial analysis of Go*

By Edward O. Thorpt and William E. Walden}

A game called Computer Go is defined. Compuier Go differs from the game of Japanese Go
ooly in that certain imprecisely écfined conventions have beea replaced by precise rules.  Some
gencral thoorems on Computer Go arce given, 25 well as a »o.oine for analysing ihe game with

the aid of a computer.

Several reduced versions of Compuler Go were analysed, and the

resultant strategics arc bricfly described,

1. Introdection

The board same called Go originated in China. There
is some doubt as to ihe exact date of its beginning, but
the game was well known in the tenth century B.c. Go
was introduced into Japan in approximately 754 a.p.
In Japan the game has become so popular and well
known that championship play is foilowed by the
general public. For ihe most part, Go kas been intro-
duced into the Uniicd States by persons from Japan.
Although Go docs not enjoy the popularity of Chess in
the United Staics, it is fast becoming a popular intel-
lectual game. For a complete discussion of the history
of Go one should examine Falkener (1961), Lasker
(1960), Smith (1936).

There are several books (Goodell, 1957; Lasker, 1960;
Morris, 1951; Smith, 1956; Takagawa, 1958) that are
principally devoted 1o the analysis of various board
situations in Go. Onc book (Roscathal, 1933) is devoied
to the analysis of various board situations for a reduced
version of the game. At least one computer prozram
(Remus, 1962) has been written which simulates a
reduced version of the game and learns *‘good™ strategies.

In this discussion we have attempied a complete
analysis for reduced versions of a game which we eail
Computer Go. At the ourset we realized that the large
number of possible moves would restrici us to very
small bozrds. However, it was our hope that such an
attempt would yizld some general resulis about the
game. Afier describing the 2ame and its rules, ‘we
present here some genecral results, and best strategies
for various reduced versions of the game.

Computer Go differs from Go as it is played only in
that certain “colloguialisms™ (imprecisely defined con-
ventions) have been replaced by precise ruies. As far
as we know, these alisrations make no essential differ-
ence in the game, and resuits for Computer Go will agree
with ordinary Go whencver the latter is unambiguous.

We were initially motivated by the thought that if

* This research was supported in part by Grant NSF-G 25058,
Grant AF-AFOSR <3763, and by The Atomic Epergy Com-
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t Mathemartics Depariment New Mexico State University.

we could find the value of N x N Go for small valuves of
N (perhaps N = 2, ..., 7), then insight into the value of
Go for larzer N mizht be obtzined. For example, -
suppose we learned Go was a win for Black when
N=234,5 and was a draw for N=6, 7, 8, 9. This
would supoest strongly that Go was & draw for all
N> 6. (It of course might be true that the results for
even N and thosc for odd N should be considered

separately.)

2. Description of Go

We now give a bricl description of the game of Go.
For dectailed descriptions of the game, we -suggest
Lasker (1560), Smith (1936).

Go is played on a board that is marked with sineteen
equidistant Line segmenis of egual leagth peralle] with
each edge. These lines produce 361 points of iner
section. One player, called Black has 181 biack siones.
The other player, called Whire, has 180 white stones.

A move consists of the placing of a stonc on one of the
vacant points of intersection. The first turn always goss
to Black. A group of stones are captured and removed
from the board when they are compietely surroundad.
boih insice and out, by the opponent’s stomss. Fig. 1
has several examples of groups of black siones the:
have been capiured and are ready for removal. A
stone cannot be placed on a vacant point of mtersection
if by so doing the caprure of the stone is capsed. We
were tempted to rephrase this as “Suicide 5 (morally)
forbidden™. A stone cannot be placed on a vacant
point of intersection if such 2 move would cause the
board to be identical to its configuration after the
player’s previous move.

A player is not required to move. He may choose
pass on his imrn. However, the zame is terminased afier
IWO COnSECUlive passes.

At the end of the game, a player’s final score is obtlained
by adding the number of captured stones in his pos-
session and the number of vacant points that are sur-
rounded by his stones. The plaver with the hijnest
score wins.

3+ Los Alamas Scientific Laboratory, University of Califorsia, Los Alamgs, New Mexico.
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Fiz. 1.—Groups of captufed biack stones

The rules above are clear enough, although they are
not stated in precise mathematical terms, There are
two situations where the rules are not precise. A
situation can arise where both players can = ¢ that
one or the other has the advantage, and they stop
making moves relative to this situation. The other case
that may arize is one where the players are repeating 2
long sethncL of moves without realizing it. In a case
like this, the game may last so long that the plavers
come {0 an agreement as to the outcome,

In formulating rules for the game of Go we hav
eliminated the siteations above. For this reason, Lhc
game which we analysc will be ealled Computer Go.
We now give the rules for this same,

Computer Go is a same between two plavers whom
we witl refer to as Black and White. Black plays on the
odd turns and W.-..t-& plays on the even turns. We
generalize the game to N » M rectangular boards,
where N and M are arbLLrary positive intesers. For
a=12 ..., Nand m=1, 2,... M consider the
pairs (m, m) corresponding to the & » M matrix of
points of intersection. For each turn ¢ and each pair
(%, m2) there is an assigned occupancy valve af .. When
play is ready to begin on turn ¢ these values are assigned
-by the computer as follows:

ay m=0and a’ ,, = a7l fore = 1.

A Black [White] move to {n, m) on turn ¢ means set

r.m = 112]. We note there that it is not always pos-
sible to move to any pair (r, )l The restrictions will
be discussed later.

A Elack [Whitc] pass on turn ¢ means Black [White]
docs not move on turn 1,
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White wins.

The pair (n, i) is
(7, m2) A (7, f), if one

adjacent to the pair (7, ), denoted
of the following hoids:

MDn=it+landm=j
MNn=i—landm=
3y m=1¢ andm=j L1
(D n=1i andm=j— 1.

The pair (n, m) 1s equivalent to the pair {7, ), denote
(m, m) ~ {4, ), if there exists 2 positive integer p and
pairs (r.. 5 .w}, w=12,...,psuch that (n, m) A (ry, 5;)
Alre 523 A Alrp, 3} and af , = af, ;, = @y =

.=a;, ., =al; Note that ~ is eguivzlence rela-
uon in the mathematical sense, “I‘d tha t there are three
types of equivalence classes so de They are (1)
Black connected groups, (2) White connecied groups,
and (3) connected groups of vacancie

After a move or a pass has b-.a."l made on Black
[White] turn ¢, the pair (n, m) is said to be captured by
Black [White] on turn ¢ if all the following hold:

(1) a, = 2[1]

(2) there exists a pair {i, f) such ﬂ'\*“

(3) if, for all (p, ) and (&, [ such
and (&, 1) ~ (n, i), a5, 5 5= 0.

If (1, m1) is captured, we sct af ., = 0.

A move to the pair (r, m) by Black [White] is illcgal

in each ol the followine situstions:

(1) g, 0

(2) (n, ) can be captured by White
pass on turn § + 1

(3) a move to (n, #i} would result in &5, = a2 77 for

=1,2,. Nandm=1,2,... M.
For each turn ¢ there is 2 number C.
capture couts, that is assicned as follows:

(1) if 7 13 odd, then C, = C,_; + O, where @ is the
number of pairs captured by Black on turn ¢ for
f=>land C; =10

(2) if ¢ is even, then &, = C,_; — Q. where Q is the
number of pairs captured by White on turn 7.

:;- 4
hat (p, a A (&, .!'_}

r!‘

[Black] after a

called the

The pair (i,m1) is said to belong to Black [White
all the following hold:
(1) a =0
(2) there exists a pair (7, /) such that &l ; = 1[2]
(3) if, for all (p, g) and 'I'IL a’} such that f': gy A (k1)
and (&, 1Y =~ (3, m), a

The gome 15 terminated if two consecutive passcs
occur, where a pass may be by choice or because no
move is available. 1f ¢ was the last tern of piay, then
the pame total & is given by § = C, = (nember of pairs
belonging to Black) — (number of pairs belonging to
White). If § >0, then Black wins. 1f § <0, then
IfS =0, then t a draw.

]if

the game is

The game is also terminated after turn ! if there exists
5 such that s {: ¢, where ¢ and s are both odd or both
even, and a,, M R e L ) B [ e s

Nand m=1,2,..., M. The condition a . — af » is
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not sufficient because a move to a pair of one confizura-
tion may be ill . but at the same time be legal in the
gther configuration. If C, == C,, then Black wins. If
C, < C, then White wins. 1" C, = C,, then the same
15 a draw. Note that this rule guaranices that the 'same

¢ for Computer Go is finite, because it provents the
game from going through endless cycles, in which the
players run agsin and again through the same con-
fisuration, by assigning 2 reasonable value to this
configuration.

3. General results

1 initial computer program to analyse
Computer Go, we found that the number of possible
moves wWas an even greater resiriction than we had
imagined. For example, one mizht think that the
games of Tic Tac Toe and 3 % 3 Computer Go are of
comparable complexity. This is not the case, for a
Go player is ailowed to pass on any given turn, adding
an additional sub-branch to cach branch of the zame
tree. Also, stones are captured in Go, creating vacant
board positions which in turn increase the number of
possible moves,

As a coasequence most of our general resulls (all
general resuhs zre for N % M rectangular Go unless
otherwisz stipulaied) were motivated by an attempt 1o
eliminate possible moves and increase the efficiency of
the computer program. However, onc theorem was
motivated by the resulls of the initial program, so we
state and prove it first.

After writing a

Theorem 1: Black never has a forced loss in Computer
Go.

e that Black does have a forced loss, and
White moves so as o force a Black loss. Then if Black

asses on his {irst move, White will not pass, for this
would make the zame a draw, Hence White moves
But this means :."; i Black could win by making the same
first move, a contradiction which completes the proofl

Several -:‘ru.—'-'a 0 whom we have talked have the
erroncous impression that if Black bezins by moving to
the centre (assusie N x N Go and that &V is odd) and
then continuss 10 move opposite to White, then Black
has at lzast 2 "F;m' This is false for odd N =35, as
shown by the idea iadicated in Fia. 2

A first step in eliminating pussﬂvlc Moves was 1o
consider 2 modified form of Computer Go which we
now define. By T-truncated Go we mean Computer Go
restricted to exactly T wurns. If neither player has won
when T turns have been completed, then the same is a
draw. A corolizry of the next theorem gives the basic
relationship berwszen Computer Go and Totruncated Go.,

Theorem 2: In the fnie game tree for Compuier Go,
suppose that draws are inserted at random at various
points of the tree. Then the value of each remair ning
branch and the same is zither unaliered or becomes a
draw.
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o—CO—C—C
G—o——o—0
—OC—O—C—0
O—E—O—0O—0

o—ob o0

Fig. 2.—Whkite moves to the lower loft vertex and then has a

winning position

Proor: Assizn the values 41, 0, and —1 to wins, draws
and losses, respectively, for Black. To assizn values to
branches of the tree, we maximize values of Black turns
and minimize values of White turns. We compute
upwards from the bottom of the tree. This is possible
since the game tree is finite. By a “Black Branch” we
mean one which arises from a Black turn. S\.p_-?msz a
branch is given, and some of the sub-branches of this
branch arc reassigned the value 0. Assumc the siven

branch is Black, so we want to minimize the values of

the sub-branchnes. If the original value of the branch is
-+ 1, then the new value V of the branch saiisfics
0= V= 1. If the original value of the branch is 0,
then = 0. If the original value of the branch is —1,
then —1 < = Q. Hence the new valuc ¥ of ihe
branch is either 0 or equal to the orizinal value of the
branch. This completes the proof.

Corollary 3: If Black wins in T-truncated Go, then
Elsc” wins in Computer Go.

Ve sce from the corollary above thar if
winning sirategy for Black in T-truncaied Go, a muc
simpler game, then we have found a winning sirateay
for Black in Computer Go.

A corollary of the next theorem
minating many White moves.

we can find a
h

gives a way of 2ii-

Theorem 4: Suppose we are given a fnite :
Let branches of the trez be removed at random and Iet
new values be assigned at random to the iips of this
pruned trec. Then the following holds:

(1) Suppose the new wvaluss {w;} are always greater
than or equal to the original values {v} and tha
min {iw;} = ¥, then if the value ¥ of the orizin
game satisfies ¥ = Y, the value of the new z=me
is also V. If the value of the orizinzl s=me
satisfies V' < ¥, then the value W of the new zame

satisfies ¥ » W= W,

(2) Suppose the new values {w;} are always less than
or equal to the original values fv} and that
min {w} = ¥. Then if the value Vr.}; 1 1¢ original
game satisfies V < ¥, the value of the new
is also V. If the value of the original samsa
satisiies ¥ > ¥, then the value I of ke new gzar
satisfies ¥ o Vg W

al
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Proor of (1): Suppose a given branch of the original
tree has value v, and some of the sub-branches of the
ziven branch have had new wvalues assigned. Let the
originzl valuss be 5; and the new values be £ Let w
be the new valee of the given branch. Lei y = max {1;}
Then v » wixt. o> ythen p= w=w. Since the
branch was arbitrary, the result holds for the zame,
compiziing the m-acf

T h\, proof of (2) is omitted due to its similarity to the
proof cf (1).

The mext corollary follows at once from theorems 1
and 4

Corollary 5: In the game tree for Computer Go or
T-truncated Go, il a branch is a win or draw for Black,
then if all sub-branches that are losses for Black are
either completely removed or changed to draws, then
the value of the branch remains unchanged. )

So far the resulis that have bzen given are related to
the same tree for Computer Go.  The next two theorems
are related to the zctual status of the game. There are
many special sitvations In the game where the plavers
can recognize the outcome of the game. Two general
conditions for this are now given.

Theorerr 6: Suppose White has just played on turn 1.
Let B be the number of pairs (i, f) such that a, ;=1
and fet ¥ be the number of pairs (i, /) such that a; ; = 2.
If ¥Af — W -+ B = C, then -Black wins by passing on
the remaining Black turns.

Proor: Suppose Black passes on turn 7 -+ 1 and then
White passes on turn f + 2. Then the game is over
and the number of pairs belonging to White is
most N ’J - W — B. But by h}'puihc*ﬁu we h;m: C,+ W
= NM L BsoC, — (WM - i) = 4 W -
(NM — E},}l{.-‘uu e (l"l.’M ﬁ-)—ZH“ EI 'lhus
3ack wins.

Suppose Black passes but While continues to move.
White would have 2 maximum number of pairs by
moving oncg, capturing all of the pairs occupied by
Plack, and then passing on subsgquent moves. If this
is the case, the number of pairs belonging to White is at
most NW — W — land C,, 5= C, — 8. But by hypo-
thesis C,—(NM—WLEB)=0, so O, ;—NM+W=0 s0
C,op—NMLWL1=0. Hence C,,,—(NM—W—1)=0,
so Black wins. This completes the proof.

¥
at

Thearesmt 7: Suppose Black has just played on tumn r.
Let B be the number of pairs (/) such thata; ; = I and
let B be the number of pairs (£, /) such th‘lt a; ;=2
If —N ‘,I — W <+ B = C, then White wins by passmg

on the remaining White turns.

Proor: Suppose White passes on turn f +— 1 and then
Black passes on turn ¢ <+ 2. Then the game 15 over and
the number of pairs belonging to Bjacx is at most
NM—B— W, But )

Co+ENM —B— - NM—-W L8 LN —B— W
— 2 = 0 so While wins.

Suppose White passes but Black continues to move.
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Black would have a maximum number of pairs by moving
once, capturing all of the pairs cccupicd by Whitc, and
then passing on subsequent moves. If this Is the case,

the number of pais belonging to Black 35 at most
NM—B—-lLand Cr =C, = H

But € - (NM — B— D=C, - NM W —F
—l e —NM—WIlL R LN L W—-—FE—=1=—1
= . Hence White wins, completing the proofl

5. Straterics

We have found best Black ‘;l""_(}'-_"iﬁ for
1x8 2x2through 2 X 4 and 3

1 x 1 through
3 Computer Go.
3

For the 1 » n games, where 1 = n = § we found that
the following are best Black resulis.

I x 4m: Win

I x(@n—1) Win

1 x(dn—2): Draw

1 x (dn — 3): Draw.

For 3 <t n < 8, (1, 2) is a best first move for Black.
The best Black strategy for 2 x 2 Co-n.“' ter Go is a
draw. The best Black strategy for 2 x 3 Co_npu ter Go

is also a draw. In this game the best first play for Black
is a pass. The best Black strategy for 2 x 4 Computer
Go is a win.  In this game Black should tryv {o occupy

opposite corners of the centre square. IF White does
not allow this, Black should fili one vertical side of the
centre square.  If White fills the other side of the centrz
square, a Black move to the upper rigi d corner (1, 4)
will lead to a win for Black. If White does not fill
the other side of the centre sguare, a Black move to
one of the other corners of the centre square will lead to
a win.

The best Black strategy in 3 % 3 Computer Go is a
win for Black. One can show by writing out cascs,
that Black wins il he occupies the entire middle row or
middle column, and White occupiss at most iwo positions.
If we combine this principle and the fact that 2 con-
nected group with one eye automaticaily has two eves
in 3 x 3 Go, we lind that a simple wi ategy can
be deseribed as follows. Black beroins with a move to
the centrc.  After this move. Black has four ways in
which to connect. White ean only block two of these
in his first two moves, so, after Black’s third move, he
will have always connected up and cained a winning
position.

We have determined the complete set of moves for
each of the stratceics above. but they are too lengthy
to be presented here.

We plan to try and find best strategies E‘af larger
versions of Computer Go in the future. Even3 x 3 Go
was too laroe for the computer when the “br:uc Forcc"
approach of completely evaluating the game tree was
applied. After the general results of ‘“wz‘t.on 3 were
introduced, the computer beeame an aid in the selution
of the problem. We expect to be able to solve the 5 x 4
case, but we belfeve that additions] general results and

e
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a corresponding reduction of the problem will be needed 16,384 words of storage, a word being 48 biis in length.

in order 1o solve the 4 = 4 case on preseni-day computing This computer has an add time of 19 microseconds, a

machines. multiply time of 160 microseconds, = divide time of
The computer that was used to obtain these resulis 425 microseconds, and a shift time of 10 = 1-8 times

was Maniac IT 2t Los Alamos. This computer has the number of shifts in microseconds.
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Po= # = ¥ Co, ulth M ==d % both ci2, vo dofind Pey—=cizi
pizy by black™, or, briefly, “syr=otzie pisy™, &5 folimes, Black
uoves 3o the contor on his fivst wove., Thopeafter, block attemns
to move opposite tha center frcz vwhize, i.e. on ovory tumn, Black
t»vs to move in such a way as to insure thzt tho conteor of rr:n. ot =

o< tho confizuvction of men {ooch assisn:
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conter of tho board ofter Bilzclh cocmplotss kis movo, IS P:ite passcs,
Blzck passcs, OF ccurso ilhifto pay cveeteslly move in such & way
£zt Black c=zmot ¢o this, =5 zhon thite czptuves & group sf Blzck
=gn 8xd the loss of tho groes so changas things thit tho csrzesmeading
groun of thits =on canust mow be captured.

Aczuminge bost play by ¥hite, for which ¥ and N does the stoatezy

of sycootzic plny 2ive Blzch gt 3cast 2 doaw? I Mo fl = 1) the

stratooy cannot b0 follewsd sinco no oo Las & Yopal powvs, If H e 3,

3 .. T - ne = T = ¥ -
M = 5, thoe stralzpy wins for Bilasi, 1 bovea®™t yot chocc=d o
- - Tag = F e - 5 - o
nrmsrocus additisns] soall M or B cases. FEowovez, If ¥ =3 ¥ syo Rot?
- | 4 P | - -, - = 4 -
&t least 5, ¥hite wins tndor best ploy, Tae idsa 4s o8 Ia Sizume 2,

Pimare 3, ctiochod, =hous haw the idec emionds reoadily to 5 x 7,

To oxtend to 5 x K, ¥ = 7, just 3dd palrs of colurnz, on2 o cach

siCz of tha Y-cxip, until 5 fizuro of the dosired size iz gemerited,

Figure 4 shows how to cxiond tho fleuse in the M dirscticon,

- - — -— 2 z - X - - =
5o tup exzenzicns orvo Indorendent of eoch othor, £0 any dosized
= - - = Yure et
B XK oxaenle, Hand ¥ 25, c=a bo oltalncs,
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